939 resultados para Tropical plant species
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The leaf beetle Metriona elatior from Brazil-Argentina was screened in the Florida (USA) State quarantine facility as a potential biological control agent of tropical soda apple, Solanum viarum, a recently arrived weed species. Multiple-choice host-specificity tests were conducted in small cages (60 cm x 60 cm x 60 cm) using 95 plant species in 29 families. Adults fed heavily on the main target weed (S. viarum), and on turkeyberry, Solanum torvum (noxious weed of Asiatic origin); fed moderately on red soda apple, Solanum capsicoides (weed of South American origin), and eggplant, Solanum melongena (economic crop); and fed lightly on aquatic soda apple, Solanum tampicense (weed of Mexican-Caribbean-Central American origin), and on silverleaf nightshade, Solanum elaeagnifolium (native weed widely distributed). M. elatior adults laid 84 to 97% of their egg masses on S. viarum, and 3 to 16% on S. melongena. Non-choice host-specificity tests were also conducted in quarantine in which M. elatior adults and neonate larvae were exposed to 17 and 19 plant species, respectively. Tests with the neonates indicate that this insect was able to complete its development on S. viarum, S. torvum, S. melongena, and S. capsicoides. Although some adult feeding and oviposition occurred on S. melongena in quarantine on potted plants in small cages, no feeding or oviposition by M. elatior was observed in field experiments conducted in Brazil. Surveys in unsprayed S. melongena fields in Argentina and Brazil indicated that M. elatior is not a pest of S. melongena in South America. The evidence obtained from the South-American field surveys, Brazil open-field experiments, and Florida quarantine host specificity tests indicate that M. elatior causes significant feeding damage to S. viarum, and does not represent a threat to S. melongena crops in the USA. Therefore an application for permission to release M. elatior against S. viarum in the USA was submitted in October 1998.
Resumo:
1. This study aimed to link basic ethnobiological research on local ecological knowledge (LEK) to the conservation of Brazilian streams, based on two case studies: original data on LEK of fishermen about freshwater fish in the Negro River, Amazon, and previously published data about LEK of farmers on the ecological relationship between forest and streams in the Macabuzinho catchment, Atlantic Forest.2. Information was obtained from fishermen through interviews using standard questionnaires containing open-ended questions. Informants for interview were selected either following some defined criteria or applying the 'snowball' method.3. Fishermen's LEK about the diets and habitats of 14 fish species in the Negro River provided new biological information on plant species that are eaten by fish, in addition to confirming some ecological patterns from the biological literature, such as dependence of fish on forests as food sources.4. In the Atlantic Forest, a comparison between farmers' LEK and a rapid stream assessment in the farmers' properties indicated that farmers tended to overestimate the ecological integrity of their streams. Farmers recognized at least 11 forest attributes that correspond to the scientific concept of ecosystem services. Such information may be useful to promote or enhance dialogue among farmers, scientists and managers.5. These results may contribute to the devising of ecosystem management measures in the Negro River, aimed to conserve both rivers and their associated floodplain forests, involving local fishermen. In the Atlantic Forest, we proposed some initiatives, such as to allow direct economic use of their forests to conciliate conflicting perceptions of farmers about ecological benefits versus economic losses from reforestation. Despite their cultural, environmental and geographical differences, the two study cases are complementary and cost-effective and promising approaches to including LEK in the design of ecological research. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees' body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee's body in the course of the flowering period of P alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production. Rev. Biol. Trop. 60 (4): 1553-1565. Epub 2012 December 01.
Resumo:
Premise of the study: We developed and characterized nuclear microsatellite markers for Anadenanthera colubrina, a tropical tree species widely distributed in South America. Methods and Results: Leaf samples of mature A. colubrina trees, popularly called "angico," were collected from an area that is greatly impacted by agricultural practices in the region of Ribeirao Preto in Sao Paulo State in southeastern Brazil. Twenty simple sequence repeat (SSR) markers were developed, 14 of which had polymorphic loci. A total of 96 alleles were detected with an average of 6.86 alleles per polymorphic locus. The expected heterozygosity, calculated at polymorphic loci, ranged from 0.18 to 0.83. Finally, we demonstrated that 18 loci were cross-amplified in A. peregrina. Conclusions: A total of 14 polymorphic markers suggest a high potential for genetic diversity, gene flow, and mating system analyses in A. colubrina.
Resumo:
The aim of this work was to determine the impact of three levels of [CO2] and two levels of soil-nutrient availability on the growth and physiological responses of two tropical tree species differing in their ecological group: Croton urucurana Baillon, a pioneer (P), and also Cariniana legalis (Martius) Kuntze, a late succession (LS). We aimed to test the hypothesis that P species have stronger response to elevated [CO2] than LS species as a result of differences in photosynthetic capacity and growth kinetics between both functional groups. Seedlings of both species were grown in open-top-chambers under high (HN) or low (LN) soil-nutrient supply and exposed to ambient (380 mu mol mol(-1)) or elevated (570 and 760 mu mol mol(-1)) [CO2]. Measurements of gas exchange, chlorophyll a fluorescence, seedling biomass and allocation were made after 70 days of treatment. Results suggest that elevated [CO2] significantly enhances the photosynthetic rates (A) and biomass production in the seedlings of both species, but that soil-nutrient supply has the potential to modify the response of young tropical trees to elevated [CO2]. In relation to plants grown in ambient [CO2], the P species grown under 760 mu mol mol(-1) [CO2] showed increases of 28% and 91% in A when grown in LN and HN, respectively. In P species grown under 570 mu mol mol(-1) [CO2], A increased by 16% under HN, but there was no effect in LN. In LS species, the enhancement of A by effect of 760 mu mol mol(-1) [CO2] was 30% and 70% in LN and HN, respectively. The exposure to 570 mu mol mol(-1) [CO2] stimulated A by 31% in HN, but was no effect in LN. Reductions in stomatal conductance (g(s)) and transpiration (E), as a result of elevated [CO2] were observed. Increasing the nutrient supply from low to high increased both the maximum rate of carboxylation (V-cmax) and maximum potential rate of electron transport (J(max)). As the level of [CO2] increased, both the V-cmax and the J(max) were found to decrease, whereas the J(max)/V-cmax ratio increased. In the LS species, the maximum efficiency of PSII (F-v/F-m) was higher in the 760 mu mol mol(-1) [CO2] treatment relative to other [CO2] treatments. The results suggest that when grown under HN and the highest [CO2], the performance of the P species C. urucurana, in terms of photosynthesis and biomass enhancement, is better than the LS species C. legalis. However, a larger biomass is allocated to roots when C. legalis seedlings were exposed to elevated [CO2]. This response would be an important strategy for plant survival and productivity of the LS species under drought stresses conditions on tropical environments in a global-change scenario. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to identify future distribution areas and propose actions to preserve passion fruit pollination service under a scenario of future climate change. We used four species of Xylocopa bees that are important for passion fruit pollination in Brazilian Tropical Savannas. We also used the known forage plant species (33 species) that are associated with this same area, since passion fruit flowers provide only nectar for bees and only during their blossoming period. We used species distribution modeling to predict the potential areas of occurrence for each bee and plant based on the current day distribution and a future climate scenario (moderate projections of climate change to 2050). We used a geographic information system to classify the models and to analyze the future areas for both groups of species. The current day distribution map showed that Xylocopa and plant species occurred primarily in the southern and central-eastern areas of the Brazilian Tropical Savannas. In the north, Xylocopa species only occurred in a small area between the states of Maranhão and Piauí while forage plant species were only observed in the northern part of the Tocantins State. However, both future scenarios (bees and plants) showed a shift in distribution, with occurrence predominantly detected in the northern areas of Brazilian Tropical Savannas. Possible conservation areas and the use of appropriate agricultural practices were suggested to ensure the maintenance of the bee/plant focal species.
Resumo:
Anthropogene Fragmentierung und Störung von Wäldern beeinflussen ökologische Prozesse. Darüber hinaus werden genetische Drift und Inzucht verstärkt und die Fitness von Populationen beeinträchtigt. Um die Einflüsse von Fragmentierung und Störung auf die Biodiversität und Prozesse in tropischen Wäldern zu ermitteln, habe ich im „Kakamega Forest“, West-Kenia, die Baumart Prunus africana genauer untersucht. Dabei lag der Fokus auf (i) der Frugivorengemeinschaft und Samenausbreitung, (ii) der Kleinsäugergemeinschaft im Kontext der Samenprädation und (iii) der genetische Populationsstruktur von Keimlingen und adulten Bäumen. Der Vergleich von Keimlingen mit adulten Bäumen ermöglicht es, Veränderungen im Genfluss zwischen Generationen festzustellen. Die Ergebnisse zeigten, dass im untersuchten Waldgebiet insgesamt 49 frugivore Arten (Affen und Vögel) vorkommen. Dabei lag die Gesamtartenzahl im zusammenhängenden Wald höher als in den isoliert liegenden Fragmenten. An den Früchten von P. africana konnten insgesamt 36 Arten fressend beobachtet werden. Hier jedoch wurden in Fragmenten eine leicht erhöhte Frugivorenzahl sowie marginal signifikant erhöhte Samenausbreitungsraten nachgewiesen. Der Vergleich von stark gestörten mit weniger gestörten Flächen zeigte eine höhere Gesamtartenzahl sowie eine signifikant höhere Frugivorenzahl in P. africana in stark gestörten Flächen. Entsprechend war die Samenausbreitungsrate in stark gestörten Flächen marginal signifikant erhöht. Diese Ergebnisse deuten darauf hin, dass die quantitative Samenausbreitung in fragmentierten und gestörten Flächen etwas erhöht ist und somit eine gewisse Artenredundanz besteht, die den Verlust einzelner Arten ausgleichen könnte. Prunus africana Samen, die auf dem Boden lagen, wurden hauptsächlich von einer Nagerart (Praomys cf. jacksonii) erbeutet. Dabei war in gestörten Waldbereichen eine tendenziell höhere Prädatoraktivität zu beobachten als in weniger gestörten. Zudem waren einzelne Samen im Gegensatz zu Samengruppen in gestörten Flächen signifikant höherem Prädationsdruck ausgesetzt. Diese Ergebnisse zeigen, dass Fragmentierung sowie anthropogene Störungen auf unterschiedliche Prozesse im Lebenszyklus eines tropischen Baumes gegensätzliche Effekte haben können. Eine Extrapolation von einem auf einen anderen Prozess kann somit nicht erfolgen. Die genetische Differenzierung der adulten Baumpopulationen war gering (FST = 0.026). Der Großteil ihrer Variation (~ 97 %) lag innerhalb der Populationen, was intensiven Genfluss in der Vergangenheit widerspiegelt. Die genetische Differenzierung der Keimlinge war etwas erhöht (FST = 0.086) und ~ 91 % ihrer Variation lag innerhalb der Populationen. Im Gegensatz zu den adulten Bäumen konnte ich für Keimlinge ein „Isolation-by-distance“-Muster feststellen. Somit sind erste Hinweise auf begrenzten Genfluss im Keimlingsstadium infolge von Fragmentierung gegeben. Obwohl die Momentaufnahmen im Freiland keine Abnahme in der Frugivorenzahl und Samenausbreitung von P. africana als Folge von Fragmentierung beobachten ließen, weisen die Ergebnisse der genetischen Studie auf einen bereits reduzierten Genaustausch zwischen den Populationen hin. Somit lässt sich feststellen, dass die Faktoren Fragmentierung und Störung genetische Diversität, ökologische Prozesse und Artendiversität in Wäldern jeweils auf unterschiedliche Weise beeinflussen. Um Konsequenzen derartiger Einflüsse folgerichtig abschätzen zu können, sind Studien auf unterschiedlichen Diversitätsebenen unabdingbar.
Resumo:
In many plant species, the genetic template of early life-stages is formed by animal-mediated pollination and seed dispersal and has profound impact on further recruitment and population dynamics. Understanding the impact of pollination and seed dispersal on genetic patterns is a central issue in plant population biology. In my thesis, I investigated (i) contemporary dispersal and gene flow distances as well as (ii) genetic diversity and spatial genetic structure (SGS) across subsequent recruitment stages in a population of the animal-pollinated and dispersed tree Prunus africana in Kakamega Forest, West Kenya. Using microsatellite markers and parentage analyses, I inferred distances of pollen dispersal (father-to-mother), seed dispersal/maternal gene flow (mother-to-offspring) as well as paternal gene flow (father-to-offspring) for four early life stages of the species (seeds and fruits, current year seedlings, seedlings ≤ 3yr, seedlings > 3yr). Distances of pollen and seed dispersal as well as paternal gene flow were significantly shorter than expected from the spatial arrangement of trees and sampling plots. They were not affected by the density of conspecific trees in the surrounding. At the propagule stage, mean pollen dispersal distances were considerably (23-fold) longer than seed dispersal distances, and paternal gene flow distances exceeded maternal gene flow by a factor of 25. Seed dispersal distances were remarkably restricted, potentially leading to a strong initial SGS. The initial genetic template created by pollination and seed dispersal was extensively altered during later recruitment stages. Potential Janzen-Connell effects led to markedly increasing distances between offspring and both parental trees in older life stages. This showed that distance and density-dependent mortality factors are not exclusively related to the mother tree, but also to the father. Across subsequent recruitment stages, the pollen to seed dispersal ratio and the paternal to maternal gene flow ratio dropped to 2.1 and 3.4, respectively, in seedlings > 3yr. The relative changes in effective pollen dispersal, seed dispersal, and paternal gene flow distances across recruitment stages elucidate the mechanisms affecting the contribution of the two processes pollen and seed dispersal to overall gene flow. Using the same six microsatellite loci, I analyzed genetic diversity and SGS across five life stages, from seed rain to adults. Levels of genetic diversity within the studied P. africana population were comparable to other Prunus species and did not vary across life stages. In congruence with the short seed dispersal distances, I found significant SGS in all life stages. SGS decreased from seed and early seedling stages to older juvenile stages, and it was higher in adults than in late juveniles of the next generation. A comparison of the data with direct assessments of contemporary gene flow patterns indicate that distance- or density-dependent mortality, potentially due to Janzen-Connell effects, led to the initial decrease in SGS. Intergeneration variation in SGS could have been driven by variation in demographic processes, the effect of overlapping generations, and local selection processes. Overall, my study showed that complex sequential processes during recruitment contribute to the spatial genetic structure of tree populations. It highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal-mediated pollen and seed dispersal on spatial population dynamics and genetic patterns of trees.
Resumo:
Fragmentation and vegetative regeneration from small fragments may contribute to population expansion, dispersal and establishment of new populations of introduced plants. However, no study has systematically tested whether a high capacity of vegetative regeneration is associated with a high degree of invasiveness. For small single-node fragments, the presence of internodes may increase regeneration capacity because internodes may store carbohydrates and proteins that can be used for regeneration. We conducted an experiment with 39 stoloniferous plant species to examine the regeneration capacity of small, single-node fragments with or without attached stolon internodes. We asked (1) whether the presence of stolon internodes increases regeneration from single-node fragments, (2) whether regeneration capacity differs between native and introduced species in China, and (3) whether regeneration capacity is positively associated with plant invasiveness at a regional scale (within China) and at a global scale. Most species could regenerate from single-node fragments, and the presence of internodes increased regeneration rate and subsequent growth and/or asexual reproduction. Regeneration capacity varied greatly among species, but showed no relationship to invasiveness, either in China or globally. High regeneration capacity from small fragments may contribute to performance of clonal plants in general, but it does not appear to explain differences in invasiveness among stoloniferous clonal species
Resumo:
Determinants of plant establishment and invasion are a key issue in ecology and evolution. Although establishment success varies substantially among species, the importance of species traits and extrinsic factors as determinants of establishment in existing communities has remained difficult to prove in observational studies because they can be confounded and mask each other. Therefore, we conducted a large multispecies field experiment to disentangle the relative importance of extrinsic factors vs. species characteristics for the establishment success of plants in grasslands. We introduced 48 alien and 45 native plant species at different seed numbers into multiple grassland sites with or without experimental soil disturbance and related their establishment success to species traits assessed in five independent multispecies greenhouse experiments. High propagule pressure and high seed mass were the most important factors increasing establishment success in the very beginning of the experiment. However, after 3 y, propagule pressure became less important, and species traits related to biotic interactions (including herbivore resistance and responses to shading and competition) became the most important drivers of success or failure. The relative importance of different traits was environment-dependent and changed over time. Our approach of combining a multispecies introduction experiment in the field with trait data from independent multispecies experiments in the greenhouse allowed us to detect the relative importance of species traits for early establishment and provided evidence that species traits—fine-tuned by environmental factors—determine success or failure of alien and native plants in temperate grasslands.
Resumo:
The ability of some invasive plant species to produce biochemical compounds toxic to native species, called allelopathy, is thought to be one of the reasons for their success when introduced to a novel range, an idea known as the Novel Weapons Hypothesis. However, support for this hypothesis mainly comes from bioassays and experiments conducted under controlled environments, whereas field evidence is rare. In a field experiment, we investigated whether three plant species invasive in Europe, Solidago gigantea, Impatiens glandulifera and Erigeron annuus, inhibit the germination of native species through allelopathy more than an adjacent native plant community. At three sites for each invasive species, we compared the germination of native species that were sown on invaded and non-invaded plots. Half of these plots were amended with activated carbon to reduce the influence of potential allelopathic compounds. The germination of sown seeds and of seeds from the seedbank was monitored over a period of 9 weeks. Activated carbon generally enhanced seed germination. This effect was equally pronounced in invaded and adjacent non-invaded plots, indicating that invasive species do not suppress germination more than a native plant community. In addition, more seeds germinated from the seedbank on invaded than on non-invaded soil, probably due to previous suppression of germination by the invasive species. Our field study does not provide evidence for the Novel Weapons Hypothesis with respect to the germination success of natives. Instead, our results suggest that if invasive species release allelopathic compounds that suppress germination, they do so to a similar degree as the native plant community.