798 resultados para Tilapia (Fish)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The knowledge of how animals deposited chemical components as water, protein, fat and ash in the carcass is importance for the formulation of a balanced diet, allowing maximum performance with a low environmental impact. So, the study was carried out to evaluate the influence of different tilapia strains (Chitralada, Commercial, Red and Universidade Federal de Lavras [UFLA]) on the deposition of bodily chemical components in the carcass. The bodily components analyzed were water, protein, fat and ash. For the determination of the bodily chemical deposition curves by age, the exponential, Brody, logistic, Gompertz and von Bertalanffy models were adjusted. The Commercial and UFLA strains deposited water at a faster speed (P<0.05) compared with the remaining strains. As for protein, the Red strain had a lower estimated maturity weight (49.37 g), and was more precocious (202 days) with regard to maximum deposition in comparison to the other strains (Chitralada, UFLA and Commercial) in which there was an estimated maturity weight of 231.5 g and maximum depositionfor 337 days. There were no differences (P>0.05) for the logistic model parameter between Red, UFLA and Commercial strains for fat, which presented a maximum fat deposition (0.23 g) at 310 days of age. Regarding ash deposition, the Commercial strain presented a higher maximum deposition (0.10 g) at 337 days, occurring later than the other strains that presented maximum deposition (0.033g) at 254 days of age. Thus, it was concluded that the genetic strains evaluated differ in chemical deposition curves of water, protein, fat and ash.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the aquatic environment, biotransformation enzymes are established biomarkers for assessing PAH exposure in fish, but little is known about the effect of 17β-estradiol (E2) on these enzymes during exposure to benzo(a)pyrene (BaP). In this study, Nile tilapia (Oreochromis niloticus) were exposed for 3, 5, and 10 days to BaP (300 μg L(-1)) and E2 (5 μg L(-1)). These substances were applied isolated or mixed. In the mixture experiment, fish were analyzed pre- and postexposure in order to better understand whether preexposure to the hormone masks the responses activated by PAH or vice versa. Phase I enzymes ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-depenthylase (PROD), and benzyloxyresorufin-O-debenzylase (BROD) activities as well as the phase II enzyme glutathione S-transferase (GST) were analyzed. Isolated E2 treatment decreased EROD activity after 3 days, but this enzyme activity returned to control values after 5 and 10 days of exposure. Isolated BaP treatment significantly induced EROD activity after 3 and 5 days, and the activity returned to control levels after ten exposure days. Combined treatment (E2 + Bap) significantly increased EROD activity, both in the pre- and postexposure. This increase was even higher than in the isolated BaP treatment, suggesting a synergism between these two compounds. When E2 and BaP were used singly, they did not change BROD and PROD activities. However, combined treatment (E2 + Bap) significantly increased PROD activity. Isolated BaP treatment increased GST activity after 10 days. However, this response was not observed in the mixture treatment, suggesting that E2 suppressed the GST induction modulated by BaP. The results put together indicated that E2 altered the biotransformation pathway regarding enzymes activated by BaP in Nile tilapia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin A (vitA) is an essential nutrient that acts as an endocrine regulator of several metabolic pathways, modulating normal growth and health status of animals. Although the importance of vitA for normal haematology and immune response is well documented for higher vertebrates, there is limited information on the physiological effects of vitA on fish. Therefore, we designed a 130-day feeding trial to evaluate the effect of vitA supplementation on growth, haematology, immune function and resistance to experimental infection with Aeromonas hydrophila and cold-induced stress. A group of 320 Nile tilapia fingerlings 7.49 ± 0.19 g weight (mean ± SD) were randomly stocked into 40 250 L-aquaria and fed practical diets containing graded levels of vitA (0, 0.06, 0.12, 0.24, 0.48, 0.96, 1.92, 3.84 mg retinol (ROH) kg−1 diet. Growth, haematology, plasma protein profile and immune response were significantly affected by vitA supplementation; however, no clear protective effect of vitA supplementation on disease and cold stress resistance were observed in this study. Clinical signs of vitA deficiency were: resting and abnormal swimming behaviour, exophthalmia, haemorrhages at the base of fins and on skin, serous fluids in abdominal cavity, neutropenia, reduction in red blood cell count, haematocrit and haemoglobin evolving to high mortality rates in a short period of time. A dietary level of vitA around 1.2 mg ROH kg−1 may be required to prevent gross deficiency signs and promote proper growth and health status of Nile tilapia. VitA does not seem to have a pronounced effect on leucocyte differentiation, but clearly plays an important role on maintaining normal erythropoiesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the effects of two lipids sources of fish residue (tilapia and salmon) compared with a vegetable oil source (soybean oil) on the fatty acid profiles of male and female lambari. This experiment was developed in a completely randomized experimental design in a 3 x 2 factorial arrangement, totaling 6 treatments resulting from the combination of the three experimental diets for both sexes, with four replications for each treatment. This study involved 120 male (2.58 +/- 0.13 g) and 72 female lambari (4.00 +/- 0.09 g), fed the experimental diets twice a day until apparent satiation for a period of 60 days. Oleic, linoleic, palmitic and stearic fatty acids were found at higher concentrations in all experimental oils and diets, as well in the muscle of male and female lambari. The low amounts of arachidonic, eicosapentaenoic and docosahexaenoic acids in the experimental diets and subsequent greater concentrations in muscle tissue, suggested that lambari are able to desaturate and elongate the chain of fatty acids with 18 carbons. The fish of both sexes that received the diet with soybean oil showed high levels of n-6 fatty acids, especially of C18: 2n-6 and low levels of eicosapentaenoic and docosahexaenoic acids. The diet with salmon residue oil promoted higher levels of fatty acids of the n-3 series and resulted in the best n-3/n-6 ratio in the muscle of male and female lambari. The oils from fish residues can be a substitute for traditional fish oil and its use in the lambari diets does not impair its growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 50 years ago, Nile tilapia were accidentally introduced to Brazil, and the decline of pearl cichlid populations, which has been intensified by habitat degradation, in some locations has been associated with the presence of Nile tilapia. There is, however, little strong empirical evidence for the negative interaction of non-native fish populations with native fish populations; such evidence would indicate a potential behavioural mechanism that could cause the population of the native fish to decline. In this study, we show that in fights staged between pairs of Nile tilapia and pearl cichlids of differing body size, the Nile tilapia were more aggressive than the pearl cichlid. Because this effect prevailed over body-size effects, the pearl cichlids were at a disadvantage. The niche overlap between the Nile tilapia and the pearl cichlid in nature, and the competitive advantage shown by the Nile tilapia in this study potentially represent one of several possible results of the negative interactions imposed by an invasive species. These negative effects may reduce population viability of the native species and cause competitive exclusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the potentially detrimental effects of copper and elevated aquatic CO2 (hypercarbia), alone or in combination, on pacu, Piaractus mesopotamicus. Fish were exposed for 48 h to control (no copper addition in normocarbia), to 400 mu g Cu2+L-1, to hypercarbic (1% CO2; PCO2=6.9 mm Hg) water and to 400 mu g Cu2+L-1+ hypercarbia. In liver the single factors caused an increase in lipid hydroperoxide concentration that was not observed when the factors were combined. Copper exposure elicited increased hepatic superoxide dismutase activity, irrespective of aquatic CO2 level. On the other hand, the effects of copper on hepatic glutathione peroxidase activity were dependent on water CO2 levels. The two stressors combined did not affect hepatic catalase activity. Hypercarbic water caused a decline in plasma glucose concentration, but this was not observed when hypercarbia was combined with copper exposure. Copper caused a decrease in branchial Na+/K+-ATPase activity that was independent of water CO2 level. Copper caused an increase in branchial metallothionein concentration that was independent of water CO2 level. Thus, branchial metallothionein and Na+/K+-ATPase were effective biomarkers of copper exposure that were not affected by water CO2 level. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defining pharmacokinetic parameters and depletion intervals for antimicrobials used in fish represents important guidelines for future regulation by Brazilian agencies of the use of these substances in fish farming. This article presents a depletion study for oxytetracycline (OTC) in tilapias (Orechromis niloticus) farmed under tropical conditions during the winter season. High performance liquid chromatography, with fluorescence detection for the quantitation of OTC in tilapia fillets and medicated feed, was developed and validated. The depletion study with fish was carried out under monitored environmental conditions. OTC was administered in the feed for five consecutive days at daily dosages of 80 mg/kg body weight. Groups of ten fish were slaughtered at 1, 2, 3, 4, 5, 8, 10, 15, 20, and 25 days after medication. After the 8th day posttreatment, OTC concentrations in the tilapia fillets were below the limit of quantitation (13 ng/g) of the method. Linear regression of the mathematical model of data analysis presented a coefficient of 0.9962. The elimination half- life for OTC in tilapia fillet and the withdrawal period were 1.65 and 6 days, respectively, considering a percentile of 99% with 95% of confidence and a maximum residue limit of 100 ng/g. Even though the study was carried out in the winter under practical conditions where water temperature varied, the results obtained are similar to others from studies conducted under controlled temperature.