999 resultados para Teoria de conjunts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste artigo propõe-se uma contribuição da teoria da vinculação na compreensão dos processos de adaptação dos adultos ao seu divórcio e como a desvinculação ao ex-cônjuge interfere na coparentalidade pós-divórcio. Este artigo formula duas hipóteses teóricas. A primeira hipótese afirma que o divórcio, enquanto processo relacional, deve ser lido como um momento de perda que germina reacções psicológicas similares às experienciadas pelos viúvos, tal como descreve Bowlby no modelo de perda da figura de vinculação, estando dependente dos estilos de vinculação dos adultos. A segunda hipótese sustenta que a coparentalidade pós-divórcio é predita pelos estilos de vinculação e pela qualidade da reorganização da vinculação dos pais. Finalmente, uma integração teórica é apresentada, operacionalizada numa proposta de investigação futura neste domínio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Filosofia Política

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Filosofia (área de especialização em Filosofia Política)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doutoramento em Finanças.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1) O equilíbrio em populações, inicialmente compostas de vários genotipos depende essencialmente de três fatores: a modalidade de reprodução e a relativa viabilidade e fertilidade dos genotipos, e as freqüências iniciais. 2) Temos que distinguir a) reprodução por cruzamento livre quando qualquer indivíduo da população pode ser cruzado com qualquer outro; b) reprodução por autofecundação, quando cada indivíduo é reproduzido por uma autofecundação; c) finalmente a reprodução mista, isto é, os casos intermediários onde os indivíduos são em parte cruzados, em parte autofecundados. 3) Populações heterozigotas para um par de gens e sem seleção. Em populações com reprodução cruzada se estabelece na primeira geração um equilíbrio entre os três genotipos, segundo a chamada regra de Hardy- Weinberg. Inicial : AA/u + Aa/v aa/u = 1 Equilibirio (u + v/2)² + u + v/2 ( w + v/2) + (w + v/2)² = p2 + 2 p o. q o. + q²o = 1 Em populações com autofecundação o equilíbrio será atingido quando estiverem presentes apenas os dois homozigotos, e uma fórmula é dada que permite calcular quantas gerações são necessárias para atingir aproximadamente este resultado. Finalmente, em populações com reprodução mista, obtemos um equilíbrio com valores intermediários, conforme Quadro 1. Frequência Genotipo Inicial mº Geração Final AA u u + 2m-1v / 2m+1 u + 1/2v Aa v 2/ 2m+2 v - aa w w + 2m - 1/ 2m + 1 v w + 1/2 v 4) Os índices de sobrevivencia. Para poder chegar a fórmulas matemáticas simples, é necessário introduzir índices de sobrevivência para medir a viabilidade e fertilidade dos homozigotos, em relação à sobrevivência dos heterozigotos. Designamos a sobrevivência absoluta de cada um dos três genotipos com x, y e z, e teremos então: x [ A A] : y [ Aa] : z [ aa] = x/y [ A A] : [ Aa] : z/ y [aa] = R A [ AA] : 1 [Aa] : Ra [aa] É evidente que os índices R poderão ter qualquer valor desde zero, quando haverá uma eliminação completa dos homozigotos, até infinito quando os heterozigotos serão completamente eliminados. Os termos (1 -K) de Haldane e (1 -S) ou W de Wright não têm esta propriedade matemática, podendo variar apenas entre zero e um. É ainda necessário distinguir índices parciais, de acordo com a marcha da eliminação nas diferentes fases da ontogenia dos indivíduos. Teremos que distinguir em primeiro lugar entre a eliminação durante a fase vegetativa e a eliminação na fase reprodutiva. Estas duas componentes são ligadas pela relação matemática. R - RV . RR 5) Populações com reprodução cruzada e eliminação. - Considerações gerais. a) O equilibrio final, independente da freqüência inicial dos genes e dos genotipos para valores da sobrevivência diferentes de um, é atingido quando os gens e os genotipos estão presentes nas proporções seguintes: (Quadro 2). po / qo = 1- ro / 1-Ra [AA] (1 - Ro)² . Rav [ Aa] = 2(1 - Ra) ( 1 - Ra) [a a} = ( 1 - Ra)² . RaA b) Fórmulas foram dadas que permitem calcular as freqüências dos genotipos em qualquer geração das populações. Não foi tentado obter fórmulas gerais, por processos de integração, pois trata-se de um processo descontínuo, com saltos de uma e outra geração, e de duração curta. 6) Populações com reprodução cruzada e eliminação. Podemos distinguir os seguintes casos: a) Heterosis - (Quadro 3 e Fig. 1). Ra < 1; Ra < 1 Inicial : Final : p (A)/q(a) -> 1-ra/1-ra = positivo/zero = infinito Os dois gens e assim os três genotipos zigóticos permanecem na população. Quando as freqüências iniciais forem maiores do que as do equilíbrio elas serão diminuidas, e quando forem menores, serão aumentadas. b) Gens recessivos letais ou semiletais. (Quadro 1 e Fig. 2). O equilíbrio será atingido quando o gen, que causa a redução da viabilidade dos homozigotos, fôr eliminado da população. . / c) Gens parcialmente dominantes semiletais. (Quadro 5 e Fig. 3). Rª ; Oz Ra < 1 Inicial : Equilibrio biológico Equilíbrio Matemático pa(A)/q(a) -> positivo /zero -> 1- Rq/ 1-Ra = positivo/negativo d) Genes incompatíveis. Ra > 1 ; Ra > 1; Ra > Ra Equílibrio/biológico p (A)/ q(a) -> positivo/zero Equilibrio matemático -> positivo/ zero -> zero/negativo -> 1-Ra/1 - Ra = negativo/negativo Nestes dois casos devemos distinguir entre o significado matemático e biológico. A marcha da eliminação não pode chegar até o equilíbrio matemático quando um dos gens alcança antes a freqüência zero, isto é, desaparece. Nos três casos teremos sempre uma eliminação relativamente rápida de um dos gens «e com isso do homozigoto respectivo e dos heterozigotòs. e) Foram discutidos mais dois casos especiais: eliminação reprodutiva diferencial dos dois valores do sexo feminino e masculino, -e gens para competição gametofítica. (Quadros 6 e 7 e Figs. 4 a 6). 7) População com autofecundação e seleção. O equilíbrio será atingido quando os genotipos estiverem presentes nas seguintes proporções: (Quadro 8); [AA] ( 0,5 - Ra). R AV [Aa] = 4. ( 0,5 - Ra) . (0.5 -R A) [aa] ( 0,5 - R A) . Rav Também foram dadas fórmulas que permitem calcular as proporções genotípicas em cada geração e a marcha geral da eliminação dos genotipos. 8)Casos especiais. Podemos notar que o termo (0,5 -R) nas fórmulas para as populações autofecundadas ocupa mais ou menos a mesma importância do que o termo (1-R) nas fórmulas para as populações cruzadas. a) Heterosis. (Quadro 9 e Fig. 7). Quando RA e Ra têm valores entre 0 e 0,5, obtemos o seguinte resultado: No equilíbrio ambos os gens estão presentes e os três heterozigotos são mais freqüentes do que os homozigotos. b) Em todos os demais casos, quando RA e Ra forem iguais ou maiores do que 0,5, o equilíbrio é atingido quando estão representados na população apenas os homozigotos mais viáveis e férteis. (Quadro 10). 9) Foram discutidos os efeitos de alterações dos valores da sobrevivência (Fig. 9), do modo de reprodução (Fig. 10) e das freqüências iniciais dos gens (Fig. 8). 10) Algumas aplicações à genética aplicada. Depois de uma discussão mais geral, dois problemas principais foram tratados: a) A homogeneização: Ficou demonstrado que a reprodução por cruzamento livre representa um mecanismo muito ineficiente, e que se deve empregar sempre ou a autofecundação ou pelo menos uma reprodução mista com a maior freqüência possível de acasalamentos consanguíneos. Fórmulas e dados (Quadro 11 e 12), permitem a determinação do número de gerações necessárias para obter um grau razoável de homozigotia- b) Heterosis. Existem dois processos, para a obtenção de um alto grau de heterozigotia e com isso de heterosis: a) O método clássico do "inbreeding and outbreeding". b) O método novo das populações balançadas, baseado na combinação de gens que quando homozigotos dão urna menor sobrevivência do que quando heterozigotos. 11) Algumas considerações sobre a teoria de evolução: a) Heterosis. Os gens com efeito "heterótico", isto é, nos casos onde os heterozigotos s mais viáveis e férteis, do que os homozigotos, oferecem um mecanismo especial de evolução, pois nestes casos a freqüência dos gens, apesar de seu efeito negativo na fase homozigota, tem a sua freqüência aumentada até que seja atingido o valor do equilíbrio. b) Gens letais e semiletais recessivos. Foi demonstrado que estes gens devem ser eliminados automáticamente das populações. Porém, ao contrário do esperado, não s raros por exemplo em milho e em Drosophila, gens que até hoje foram classificados nesta categoria. Assim, um estudo detalhado torna-se necessário para resolver se os heterozigotos em muitos destes casos não serão de maior sobrevivência do que ambos os homozigotos, isto é, que se trata realmente de genes heteróticos. c) Gens semiletais parcialmente dominantes. Estes gens serão sempre eliminados nas populações, e de fato eles são encontrados apenas raramente. d) Gens incompatíveis. São também geralmente eliminados das populações. Apenas em casos especiais eles podem ter importância na evolução, representando um mecanismo de isolamento.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that, in a locally presentable category, localization exists with respect to every set of morphisms, while the statement that localization with respect to every (possibly proper) class of morphisms exists in locally presentable categories is equivalent to a large-cardinal axiom from set theory. One proves similarly, on one hand, that homotopy localization exists with respect to sets of maps in every cofibrantly generated, left proper, simplicial model category M whose underlying category is locally presentable. On the other hand, as we show in this article, the existence of localization with respect to possibly proper classes of maps in a model category M satisfying the above assumptions is implied by a large-cardinal axiom called Vopënka's principle, although we do not know if the reverse implication holds. We also show that, under the same assumptions on M, every endofunctor of M that is idempotent up to homotopy is equivalent to localization with respect to some class S of maps, and if Vopënka's principle holds then S can be chosen to be a set. There are examples showing that the latter need not be true if M is not cofibrantly generated. The above assumptions on M are satisfied by simplicial sets and symmetric spectra over simplicial sets, among many other model categories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document del fitxer adjunt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Part I, we formulate and examine some systems that have arisen in the study of the constructible hierarchy; we find numerous transitive models for them, among which are supertransitive models containing all ordinals that show that Devlin's system BS lies strictly between Gandy's systems PZ and BST'; and we use our models to show that BS fails to handle even the simplest rudimentary functions, and is thus inadequate for the use intended for it in Devlin's treatise. In Part II we propose and study an enhancement of the underlying logic of these systems, build further models to show where the previous hierarchy of systems is preserved by our enhancement; and consider three systems that might serve for Devlin's purposes: one the enhancement of a version of BS, one a formulation of Gandy-Jensen set theory, and the third a subsystem common to those two. In Part III we give new proofs of results of Boffa by constructing three models in which, respectively, TCo, AxPair and AxSing fail; we give some sufficient conditions for a set not to belong to the rudimentary closure of another set, and thus answer a question of McAloon; and we comment on Gandy's numerals and correct and sharpen other of his observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es presenta críticament l’obra de Hans-Robert Jauss, fent incís en la seva teoria de l’experiència estètica. El capítol 1 descriu el context de l’obra d’aquest esteta i hermeneuta alemany en tres àmbits: a) l’ històricointel•lectual, que s’emmarca dintre la teoria literària de la recepció o Escola de Constança; b) l’evolució en el temps teòrica de l’obra, i c) la seva pretesa relació amb la postmodernitat. El capítol 2 relaciona les aportacions teòriques de Jauss amb el seu antecedent filosòfic més important: l’hermenèutica de Gadamer. El tercer capítol presenta la teoria de l’experiència estètica de Jauss, deixada al marge pel nostre àmbit acadèmic, malgrat el seu interès, i en fa una valoració crítica. Finalment, un Annex sobre la teoria estètica kantiana i una conclusió indiquen la continuació d’aquesta investigació.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El treball de recerca que aquí es presenta és l’estudi dels tres primers "elementa" de la "Geometriae Speciosae Elementa" (Bolonya, 1659) de Pietro Mengoli (1625-1686), que fou possiblement el deixeble més original de Bonaventura Cavalieri (1598-1647). En aquesta obra Mengoli desenvolupa un nou mètode per calcular quadratures utilitzant una teoria numèrica anomenada de “quasi proporcions”. Mengoli fonamenta les quasi proporcions en la teoria de proporcions del llibre cinquè dels "Elements" d’Euclides, a la qual hi afegeix unes nocions originals: raó “quasi nul•la”, “quasi infinita” i “quasi un nombre”. Una exhaustiva anàlisi d’aquesta teoria demostra l’originalitat de l’obra de Mengoli tant pel que fa a la seva forma d’exposició com pel que fa al seu contingut.