981 resultados para Semen quality
Resumo:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
Resumo:
Objectives: The objectives of this study were to specifically investigate the differences in culture, attitudes and social networks between Australian and Taiwanese men and women and identify the factors that predict midlife men and women’s quality of life in both countries. Methods: A stratified random sample strategy based on probability proportional sampling (PPS) was conducted to investigate 278 Australian and 398 Taiwanese midlife men and women’s quality of life. Multiple regression modelling and classification and regression trees (CARTs) were performed to examine the potential differences on culture, attitude, social networks, social demographic factors and religion/spirituality in midlife men and women’s quality of life in both Australia and Taiwan. Results: The results of this study suggest that culture involves multiple functions and interacts with attitudes, social networks and individual factors to influence a person’s quality of life. Significant relationships were found between the interaction between cultural circumstances and a person’s internal and external factors. The research found that good social support networks and a healthy optimistic disposition may significantly enhance midlife men and women’s quality of life. Conclusion: The study indicated that there is a significant relationship between culture, attitude, social networks and quality of life in midlife Australian and Taiwanese men and women. People who had higher levels of horizontal individualism and collectivism, positive attitudes and better social support had better psychological, social, physical and environmental health, while it emerged that vertical individualists with competitive characteristics would experience a lower quality of life. This study has highlighted areas where opportunities exist to further reflect upon contemporary social health policies for Australian and Taiwanese societies and also within the global perspective, in order to provide enhanced quality care for growing midlife populations.
Resumo:
Managing service quality is of primary importance for organizations that are increasingly service oriented, and offering a growing range of services to external and internal customers. Managing service quality requires the capacity to measure service quality, concomitantly requiring explicit conceptions of ‘service’ and ‘service quality’. This white-paper explores three keys areas of service and service marketing literature: service definition and conceptualisation, service classifications, and service quality models, and make the following observations and proposals.
Resumo:
The study aimed to evaluate the suitability of Escherichia coli, enterococci and C. perfringens to assess the microbiological quality of roof harvested rainwater, and to assess whether the concentrations of these faecal indicators can be used to predict the presence or absence of specific zoonotic bacterial or protozoan pathogens. From a total of 100 samples tested, respectively 58%, 83% and 46% of samples were found to be positive for E. coli, enterococci and C. perfringens spores, as determined by traditional culture based methods. Additionally, in the samples tested, 7%, 19%, 1%, 8%, 17%, and 15% were PCR positive for A. hydrophila lip, C. coli ceuE, C. jejuni mapA, L. pneumophila mip, Salmonella invA, and G. lamblia β-giardin genes. However, none of the samples was positive for E. coli O157 LPS, VT1, VT2 and C. parvum COWP genes. The presence or absence of these potential pathogens did not correlate with any of the faecal indicator bacterial concentrations as determined by a binary logistic regression model. The roof-harvested rainwater samples tested in this study appear to be of poor microbiological quality and no significant correlation was found between the concentration of faecal indicators and pathogenic microorganisms. The use of faecal indicator bacteria raises questions regarding their reliability in assessing the microbiological quality of water and particularly their poor correlation with pathogenic microorganisms. The presence of one or more zoonotic pathogens suggests that the microbiological analysis of water should be performed, and appropriate treatment measures should be undertaken especially in tanks where the water is used for drinking.
Resumo:
Recent years have seen the introduction of formalised accreditation processes in both community and residential aged care, but these only partially address quality assessment within this sector. Residential aged care in Australia does not yet have a standardised system of resident assessment related to clinical, rather than administrative, outcomes. This paper describes the development of a quality assessment tool aimed at addressing this gap. Utilising previous research and the results of nominal groups with experts in the field, the 21-item Clinical Care Indicators (CCI) Tool for residential aged care was developed and trialled nationally. The CCI Tool was found to be simple to use and an effective means of collecting data on the state of resident health and care, with potential benefits for resident care planning and continuous quality improvement within facilities and organisations. The CCI Tool was further refined through a small intervention study to assess its utility as a quality improvement instrument and to investigate its relationship with resident quality of life. The current version covers 23 clinical indicators, takes about 30 minutes to complete and is viewed favourably by nursing staff who use it. Current work focuses on psychometric analysis and benchmarking, which should enable the CCI Tool to make a positive contribution to the measurement of quality in aged care in Australia.
Resumo:
Background: This study examined the quality of life (QOL), measured by the Functional Assessment of Cancer Therapy (FACT) questionnaire, among urban (n=277) and non-urban (n=323) breast cancer survivors and women from the general population (n=1140) in Queensland, Australia. ---------- Methods: Population-based samples of breast cancer survivors aged <75 years who were 12 months post-diagnosis and similarly-aged women from the general population were recruited between 2002 and 2007. ---------- Results: Age-adjusted QOL among urban and non-urban breast cancer survivors was similar, although QOL related to breast cancer concerns was the weakest domain and was lower among non-urban survivors than their urban counterparts (36.8 versus 40.4, P<0.01). Irrespective of residence, breast cancer survivors, on average, reported comparable scores on most QOL scales as their general population peers, although physical well-being was significantly lower among non-urban survivors (versus the general population, P<0.01). Overall, around 20%-33% of survivors experienced lower QOL than peers without the disease. The odds of reporting QOL below normative levels were increased more than two-fold for those who experienced complications following surgery, reported upper-body problems, had higher perceived stress levels and/or a poor perception of handling stress (P<0.01 for all). ---------- Conclusions: Results can be used to identify subgroups of women at risk of low QOL and to inform components of tailored recovery interventions to optimize QOL for these women following cancer treatment.
Resumo:
Objective To describe quality of life (QOL) over a 12-month period among women with breast cancer, consider the association between QOL and overall survival (OS), and explore characteristics associated with QOL declines. Methods A population-based sample of Australian women (n=287) with invasive, unilateral breast cancer (Stage I+), was observed prospectively for a median of 6.6 years. QOL was assessed at six, 12 and 18 months post-diagnosis, using the Functional Assessment of Cancer Therapy, Breast (FACT-B+4) questionnaire. Raw scores for the FACT-B+4 and subscales were computed and individuals were categorized according to whether QOL declined, remained stable or improved between six and 18 months. Kaplan-Meier and Cox proportional hazards survival methods were used to estimate OS and its associations with QOL. Logistic regression models identified factors associated with QOL decline. Results Within FACT-B+4 sub-scales, between 10% and 23% of women showed declines in QOL. Following adjustment for established prognostic factors, emotional wellbeing and FACT-B+4 scores at six months post-diagnosis were associated with OS (p<0.05). Declines in physical (p<0.01) or functional (p=0.02) well-being between six and 18 months post-diagnosis were also associated significantly with OS. Receiving multiple forms of adjuvant treatment, a perception of not handling stress well and reporting one or more other major life events at six months post-diagnosis were factors associated with declines in QOL in multivariable analyses. Conclusions Interventions targeted at preventing QOL declines may ultimately improve quantity as well as quality of life following breast cancer.
Resumo:
Masks are widely used in different industries, for example, traditional metal industry, hospitals or semiconductor industry. Quality is a critical issue in mask industry as it is related to public health and safety. Traditional quality practices for manufacturing process have some limitations in implementing them in mask industries. This paper aims to investigate the suitability of Six Sigma quality control method for the manufacturing process in the mask industry to provide high quality products, enhancing the process capacity, reducing the defects and the returned goods arising in a selected mask manufacturing company. This paper suggests that modifications necessary in Six Sigma method for effective implementation in mask industry.
Resumo:
A pragmatic method for assessing the accuracy and precision of a given processing pipeline required for converting computed tomography (CT) image data of bones into representative three dimensional (3D) models of bone shapes is proposed. The method is based on coprocessing a control object with known geometry which enables the assessment of the quality of resulting 3D models. At three stages of the conversion process, distance measurements were obtained and statistically evaluated. For this study, 31 CT datasets were processed. The final 3D model of the control object contained an average deviation from reference values of −1.07±0.52 mm standard deviation (SD) for edge distances and −0.647±0.43 mm SD for parallel side distances of the control object. Coprocessing a reference object enables the assessment of the accuracy and precision of a given processing pipeline for creating CTbased 3D bone models and is suitable for detecting most systematic or human errors when processing a CT-scan. Typical errors have about the same size as the scan resolution.
Resumo:
This paper investigates a wireless sensor network deployment - monitoring water quality, e.g. salinity and the level of the underground water table - in a remote tropical area of northern Australia. Our goal is to collect real time water quality measurements together with the amount of water being pumped out in the area, and investigate the impacts of current irrigation practice on the environments, in particular underground water salination. This is a challenging task featuring wide geographic area coverage (mean transmission range between nodes is more than 800 meters), highly variable radio propagations, high end-to-end packet delivery rate requirements, and hostile deployment environments. We have designed, implemented and deployed a sensor network system, which has been collecting water quality and flow measurements, e.g., water flow rate and water flow ticks for over one month. The preliminary results show that sensor networks are a promising solution to deploying a sustainable irrigation system, e.g., maximizing the amount of water pumped out from an area with minimum impact on water quality.
Resumo:
Water environments are greatly valued in urban areas as ecological and aesthetic assets. However, it is the water environment that is most adversely affected by urbanisation. Urban land use coupled with anthropogenic activities alters the stream flow regime and degrade water quality with urban stormwater being a significant source of pollutants. Unfortunately, urban water pollution is difficult to evaluate in terms of conventional monetary measures. True costs extend beyond immediate human or the physical boundaries of the urban area and affect the function of surrounding ecosystems. Current approaches for handling stormwater pollution and water quality issues in urban landscapes are limited as these are primarily focused on ‘end-of-pipe’ solutions. The approaches are commonly based either on, insufficient design knowledge, faulty value judgements or inadequate consideration of full life cycle costs. It is in this context that the adoption of a triple bottom line approach is advocated to safeguard urban water quality. The problem of degradation of urban water environments can only be remedied through innovative planning, water sensitive engineering design and the foresight to implement sustainable practices. Sustainable urban landscapes must be designed to match the triple bottom line needs of the community, starting with ecosystem services first such as the water cycle, then addressing the social and immediate ecosystem health needs, and finally the economic performance of the catchment. This calls for a cultural change towards urban water resources rather than the current piecemeal and single issue focus approach. This paper discusses the challenges in safeguarding urban water environments and the limitations of current approaches. It then explores the opportunities offered by integrating innovative planning practices with water engineering concepts into a single cohesive framework to protect valuable urban ecosystem assets. Finally, a series of recommendations are proposed for protecting urban water resources within the context of a triple bottom line approach.
Resumo:
Background: The quality of stormwater runoff from ports is significant as it can be an important source of pollution to the marine environment. This is also a significant issue for the Port of Brisbane as it is located in an area of high environmental values. Therefore, it is imperative to develop an in-depth understanding of stormwater runoff quality to ensure that appropriate strategies are in place for quality improvement. ---------------- The Port currently has a network of stormwater sample collection points where event based samples together with grab samples are tested for a range of water quality parameters. Whilst this information provides a ‘snapshot’ of the pollutants being washed from the catchment/s, it does not allow for a quantifiable assessment of total contaminant loads being discharged to the waters of Moreton Bay. It also does not represent pollutant build-up and wash-off from the different land uses across a broader range of rainfall events which might be expected. As such, it is difficult to relate stormwater quality to different pollutant sources within the Port environment. ----------------- Consequently, this would make the source tracking of pollutants to receiving waters extremely difficult and in turn the ability to implement appropriate mitigation measures. Also, without this detailed understanding, the efficacy of the various stormwater quality mitigation measures implemented cannot be determined with certainty. --------------- Current knowledge on port stormwater runoff quality Currently, little knowledge exists with regards to the pollutant generation capacity specific to port land uses as these do not necessarily compare well with conventional urban industrial or commercial land use due to the specific nature of port activities such as inter-modal operations and cargo management. Furthermore, traffic characteristics in a port area are different to a conventional urban area. Consequently, as data inputs based on an industrial and commercial land uses for modelling purposes is questionable. ------------------ A comprehensive review of published research failed to locate any investigations undertaken with regards to pollutant build-up and wash-off for port specific land uses. Furthermore, there is very limited information made available by various ports worldwide about the pollution generation potential of their facilities. Published work in this area has essentially focussed on the water quality or environmental values in the receiving waters such as the downstream bay or estuary. ----------------- The Project: The research project is an outcome of the collaborative Partnership between the Port of Brisbane Corporation (POBC) and Queensland University of Technology (QUT). A key feature of this Partnership is the undertaking of ‘cutting edge’ research to strengthen the environmental custodianship of the Port area. This project aims to develop a port specific stormwater quality model to allow informed decision making in relation to stormwater quality improvement in the context of the increased growth of the Port. --------------- Stage 1 of the research project focussed on the assessment of pollutant build-up and wash-off using rainfall simulation from the current Port of Brisbane facilities with the longer-term objective of contributing to the development of ecological risk mitigation strategies for future expansion scenarios. Investigation of complex processes such as pollutant wash-off using naturally occurring rainfall events has inherent difficulties. These can be overcome using simulated rainfall for the investigations. ----------------- The deliverables for Stage 1 included the following: * Pollutant build-up and wash-off profiles for six primary land uses within the Port of Brisbane to be used for water quality model development. * Recommendations with regards to future stormwater quality monitoring and pollution mitigation measures. The outcomes are expected to deliver the following benefits to the Port of Brisbane: * The availability of Port specific pollutant build-up and wash-off data will enable the implementation of customised stormwater pollution mitigation strategies. * The water quality data collected would form the baseline data for a Port specific water quality model for mitigation and predictive purposes. * To be at the cutting-edge in terms of water quality management and environmental best practice in the context of port infrastructure. ---------------- Conclusions: The important conclusions from the study are: * It confirmed that the Port environment is unique in terms of pollutant characteristics and is not comparable to typical urban land uses. * For most pollutant types, the Port land uses exhibited lower pollutant concentrations when compared to typical urban land uses. * The pollutant characteristics varied across the different land uses and were not consistent in terms of the land use. Hence, the implementation of stereotypical structural water quality improvement devices could be of limited value. * The <150m particle size range was predominant in suspended solids for pollutant build-up as well as wash-off. Therefore, if suspended solids are targeted as the surrogate parameter for water quality improvement, this specific particle size range needs to be removed. ------------------- Recommendations: Based on the study results the following preliminary recommendations are made: * Due to the appreciable variation in pollutant characteristics for different port land uses, any water quality monitoring stations should preferably be located such that source areas can be easily identified. * The study results having identified significant pollutants for the different land uses should enable the development of a more customised water quality monitoring and testing regime targeting the critical pollutants. * A ‘one size fits all’ approach may not be appropriate for the different port land uses due to the varying pollutant characteristics. As such, pollution mitigation will need to be specifically tailored to suit the specific land use. * Any structural measures implemented for pollution mitigation to be effective should have the capability to remove suspended solids of size <150m. * Based on the results presented and the particularly the fact that the Port land uses cannot be compared to conventional urban land uses in relation to pollutant generation, consideration should be given to the development of a port specific water quality model.
Resumo:
Background: The quality of stormwater runoff from ports is significant as it can be an important source of pollution to the marine environment. This is also a significant issue for the Port of Brisbane as it is located in an area of high environmental values. Therefore, it is imperative to develop an in-depth understanding of stormwater runoff quality to ensure that appropriate strategies are in place for quality improvement, where necessary. To this end, the Port of Brisbane Corporation aimed to develop a port specific stormwater model for the Fisherman Islands facility. The need has to be considered in the context of the proposed future developments of the Port area. ----------------- The Project: The research project is an outcome of the collaborative Partnership between the Port of Brisbane Corporation (POBC) and Queensland University of Technology (QUT). A key feature of this Partnership is that it seeks to undertake research to assist the Port in strengthening the environmental custodianship of the Port area through ‘cutting edge’ research and its translation into practical application. ------------------ The project was separated into two stages. The first stage developed a quantitative understanding of the generation potential of pollutant loads in the existing land uses. This knowledge was then used as input for the stormwater quality model developed in the subsequent stage. The aim is to expand this model across the yet to be developed port expansion area. This is in order to predict pollutant loads associated with stormwater flows from this area with the longer term objective of contributing to the development of ecological risk mitigation strategies for future expansion scenarios. ----------------- Study approach: Stage 1 of the overall study confirmed that Port land uses are unique in terms of the anthropogenic activities occurring on them. This uniqueness in land use results in distinctive stormwater quality characteristics different to other conventional urban land uses. Therefore, it was not scientifically valid to consider the Port as belonging to a single land use category or to consider as being similar to any typical urban land use. The approach adopted in this study was very different to conventional modelling studies where modelling parameters are developed using calibration. The field investigations undertaken in Stage 1 of the overall study helped to create fundamental knowledge on pollutant build-up and wash-off in different Port land uses. This knowledge was then used in computer modelling so that the specific characteristics of pollutant build-up and wash-off can be replicated. This meant that no calibration processes were involved due to the use of measured parameters for build-up and wash-off. ---------------- Conclusions: Stage 2 of the study was primarily undertaken using the SWMM stormwater quality model. It is a physically based model which replicates natural processes as closely as possible. The time step used and catchment variability considered was adequate to accommodate the temporal and spatial variability of input parameters and the parameters used in the modelling reflect the true nature of rainfall-runoff and pollutant processes to the best of currently available knowledge. In this study, the initial loss values adopted for the impervious surfaces are relatively high compared to values noted in research literature. However, given the scientifically valid approach used for the field investigations, it is appropriate to adopt the initial losses derived from this study for future modelling of Port land uses. The relatively high initial losses will reduce the runoff volume generated as well as the frequency of runoff events significantly. Apart from initial losses, most of the other parameters used in SWMM modelling are generic to most modelling studies. Development of parameters for MUSIC model source nodes was one of the primary objectives of this study. MUSIC, uses the mean and standard deviation of pollutant parameters based on a normal distribution. However, based on the values generated in this study, the variation of Event Mean Concentrations (EMCs) for Port land uses within the given investigation period does not fit a normal distribution. This is possibly due to the fact that only one specific location was considered, namely the Port of Brisbane unlike in the case of the MUSIC model where a range of areas with different geographic and climatic conditions were investigated. Consequently, the assumptions used in MUSIC are not totally applicable for the analysis of water quality in Port land uses. Therefore, in using the parameters included in this report for MUSIC modelling, it is important to note that it may result in under or over estimations of annual pollutant loads. It is recommended that the annual pollutant load values given in the report should be used as a guide to assess the accuracy of the modelling outcomes. A step by step guide for using the knowledge generated from this study for MUSIC modelling is given in Table 4.6. ------------------ Recommendations: The following recommendations are provided to further strengthen the cutting edge nature of the work undertaken: * It is important to further validate the approach recommended for stormwater quality modelling at the Port. Validation will require data collection in relation to rainfall, runoff and water quality from the selected Port land uses. Additionally, the recommended modelling approach could be applied to a soon-to-be-developed area to assess ‘before’ and ‘after’ scenarios. * In the modelling study, TSS was adopted as the surrogate parameter for other pollutants. This approach was based on other urban water quality research undertaken at QUT. The validity of this approach should be further assessed for Port land uses. * The adoption of TSS as a surrogate parameter for other pollutants and the confirmation that the <150 m particle size range was predominant in suspended solids for pollutant wash-off gives rise to a number of important considerations. The ability of the existing structural stormwater mitigation measures to remove the <150 m particle size range need to be assessed. The feasibility of introducing source control measures as opposed to end-of-pipe measures for stormwater quality improvement may also need to be considered.