917 resultados para Self-assembled films
Resumo:
Two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(311)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows deferring from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-xAs solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [01 (1) over bar] and [(2) over bar 33], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between neighbouring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. Photoluminescence (PL) result demonstrates that QDs grown on (311)B have the narrowest linewidth and the strongest integrated intensity, compared to those grown on (100) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(3 1 1)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows differing from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-As-x solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [0 1 (1) over bar] and [(2) over bar 3 3], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between the neighboring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. The photoluminescence (PL) result demonstrates that QDs grown on (3 1 1)B have the narrowest linewidth and the strongest integrated intensity, compared to those on (1 0 0) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We report the structural and optical characteristics of InAs quantum dots (QDs) grown on GaAs (311)A substrates. Atomic force microscopic result shows that QDs on (311)A surface exhibit a nonconventional, faceted, arrowhead-like shapes aligned in the [233] direction. The photoluminescence (PL) intensity, peak position and the full width at half maxinum (FWHM) are all closely related to the measurement temperature. The fast redshift of PL energy and monotonous decrease of linewidth with increasing temperature were observed and explained by carriers being thermally activated to the barrier produced by the wetting layer and then being retrapped and recombined in energetically lower-lying QDs states. This model explains our results well.
Resumo:
Morphology of self-assembled GeSi quantum dot grown on Si(113) by Si molecular beam epitaxy has been studied by transmission electron microscopy and atomic force microscopy. Photoluminescence from the as-grown sample and annealed sample was studied. The results were analyzed and explained.
Resumo:
InAs and In0.9Al0.1As self-assembled quantum dots have been grown by Stranski-Krastanow growth mode on In0.52Al0.48As lattice-matched on (0 0 1)InP substrates by MBE. The ternary In0.9Al0.1As dots on InP was demonstrated for the first time. The structural and optical properties were characterized using TEM and PL, respectively. Experimental results show that, a larger critical thickness is required for In0.9Al0.1As dots formation than for InAs dots, the In0.9Al0.1As dots show larger sizes and less homogeneity; some ordering in alignment can be observed in both InAs and In0.9Al0.1As dots, and In0.9Al0.1As dots give narrower luminescence than InAs dots. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Red-emitting at about 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy are demonstrated, A double-peak structure of photoluminescence (PL) spectra from quantum dots was observed, and a bimodal distribution of dot sizes was also confirmed by an atomic force micrograph (AFM) image for uncapped sample. From the temperature and excitation intensity dependence of PL spectra, it is found that the double-peak structure of PL spectra from quantum dots is strongly correlated to the two predominant quantum dot families. Taking into account the quantum-size effect on the peak energy, it is proposed that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical to the statistical distribution of dot lateral size from the AFM image.
Resumo:
Red-emission at similar to 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy (MBE) has been demonstrated. We obtained a double-peak structure of photoluminescence (PL) spectra from quantum dots. An atomic force micrograph (AFM) image for uncapped sample also shows a bimodal distribution of dot sizes. From the temperature and excitation intensity dependence of PL spectra, we found that the double-peak structure of PL spectra from quantum dots was strongly correlated to the two predominant quantum dot families. Taking into account quantum-size effect on the peak energy, we propose that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical with the statistical distribution of dot lateral size from the AFM image.
Resumo:
Photoluminescence spectroscopy has been used to investigate self-assembled InAs islands in InAlAs grown on InP(0 0 1) by molecular beam epitaxy, in correlation with transmission electron microscopy. The nominal deposition of 3.6 monolayers of InAs at 470 degrees C achieves the onset stage of coherent island formation. In addition to one strong emission around 0.74 eV, the sample displaces several emission peaks at 0.87, 0.92. 0.98, and 1.04 eV. Fully developed islands that coexist with semi-finished disk islands account for the multipeak emission. These results provide strong evidence of size quantization effects in InAs islands. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Molecular beam epitaxy has been used for growing InGaAs self-assembled quantum dots (QDs) in InAlAs on an InP(001) substrate. Nominal deposition of 9.6 monolayers of In0.9Ga0.1As results in QDs of similar to 6.5 nm high with an areal density of 3.3 X 10(11) cm(-2). Conspicuous bimodal size distribution is identified, and is responsible for the observed QDs photoluminescence (PL) emission with two peaks at 0.627 and 0.657 eV. Good agreement is achieved between the observed PL peak energies and calculated results. (C) 1999 American Institute of Physics. [S00218979(99)00101-2].
Resumo:
The electronic structure of an InAs self-assembled quantum dot in the presence of a perpendicular magnetic field is investigated theoretically. The effect of finite offset, valence-band mixing, and strain are taken into account. The hole levels show strong anticrossings. The large strain and strong magnetic field decrease the effect of mixing between heavy hole and light hole. The hole energy levels have in general a weaker field dependence compared with the corresponding uncoupled levels.
Resumo:
The effect of growth interruption on the InAs deposition and its subsequent growth as self-assembled island structures, in particular the material transport process of the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurements. InAs material in structures with only coherent islands transfers from the wetting layer to the formed islands and the growth interruption causes a red shift of PL peak energy. On the other hand, the PL peak shifts to higher energy in structures containing simultaneously coherent and noncoherent islands with dislocations. In this case, the noncoherent islands capture InAs material from the surrounding wetting layer as well as coherent islands, which casues a reduction in the size of these islands. The variations in the PL intensity and line width are also discussed. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.
Resumo:
The influence of interdot electronic coupling on photoluminescence (PL) spectra of self-assembled InAs/GaAs quantum dots (QDs) has been systematically investigated combining with the measurement of transmission electron microscopy. The experimentally observed fast red-shift of PL energy and an anomalous reduction of the linewidth with increasing temperature indicate that the QD ensemble can be regarded as a coupled system. The study of multilayer vertically coupled QD structures shows that a red-shift of PL peak energy and a reduction of PL linewidth are expected as the number of QD layers is increased. On the other hand, two layer QDs with different sizes have been grown according to the mechanism of a vertically correlated arrangement. However, only one PL peak related to the large QD ensemble has been observed due to the strong coupling in InAs pairs. A new possible mechanism to reduce the PL linewidth of QD ensemble is also discussed.
Resumo:
Fabrication of semiconductor nanostructures such as quantum dots (QDs), quantum rings (QRs) has been considered as the important step for realization of solid state quantum information devices, including QDs single photon emission source, QRs single electron memory unit, etc. To fabricate GaAs quantum rings, we use Molecular Beam Epitaxy (MBE) droplet technique in this report. In this droplet technique, Gallium (Ga) molecular beams are supplied initially without Arsenic (As) ambience, forming droplet-like nano-clusters of Ga atoms on the substrate, then the Arsenic beams are supplied to crystallize the Ga droplets into GaAs crystals. Because the morphologies and dimensions of the GaAs crystal are governed by the interplay between the surface migration of Ga and As adatoms and their crystallization, the shape of the GaAs crystals can be modified into rings, and the size and density can be controlled by varying the growth temperatures and As/Ga flux beam equivalent pressures(BEPs). It has been shown by Atomic force microscope (AFM) measurements that GaAs single rings, concentric double rings and coupled double rings are grown successfully at typical growth temperatures of 200 C to 300 C under As flux (BEP) of about 1.0 x 10(-6) Torr. The diameter of GaAs rings is about 30-50 nm and thickness several nm.
Resumo:
Self-assembled InAs QD dot-in-a-well (DWELL) structures were grown on GaAs substrate by MBE system, and heterojunction modulation-doped field effect transistor (MODFET) was fabricated. The optical properties of the samples show that the photoluminescence of InAs/GaAs self-assembled quantum dot (SAQD) is at 1.265 mu m at 300 K. The temperature-dependence of the abnormal redshift of InAs SAQD wavelength with the increasing temperature was observed, which is closely related with the inhomogeneous size distribution of the InAs quantum dot. According to the electrical measurement, high electric field current-voltage characteristic of the MODFET device were obtained. The embedded InAs QD of the samples can be regard as scattering centers to the vicinity of the channel electrons. The transport property of the electrons in GaAs channel will be modulated by the QD due to the Coulomb interaction. It has been proposed that a MODFET embedded with InAs QDs presents a novel type of field effect photon detector.