942 resultados para Rääf, Leonhard Fredrik, 1786-1872.
Resumo:
The electrical and communication performance of a 0.8-mu W UHF temperature telemeter designed for human vaginal placement is discussed; a solenoidal loop antenna was used, occupying a volume of 0.1 cm(3). In situ, measured power absorption was between 19-25 dB, resulting in an effective operating range of 10 m. Capacitive loading lowered the antenna's resonant frequency by 1.4% and there was a significant polarization change in the radiated output.
Resumo:
It is demonstrated that spatio-temporally resolved emission studies of a capacitively coupled gaseous electronics conference reference cell discharge can be used to determine changes in the heating mechanisms in such discharges.
Resumo:
Comparisons between experimentally measured time-dependent electron energy distribution functions and optical emission intensities are reported for low-frequency (100 and 400 kHz) radio-frequency driven discharges in argon. The electron energy distribution functions were measured with a time-resolved Langmuir probe system. Time-resolved optical emissions of argon resonance lines at 687.1 and 750.4 nm were determined by photon-counting methods. Known ground-state and metastable-state excitation cross sections were used along with the measured electron energy distribution functions to calculate the time dependence of the optical emission intensity. It was found that a calculation using only the ground-state cross sections gave the best agreement with the time dependence of the measured optical emission. Time-dependent electron density, electron temperature, and plasma potential measurements are also reported.
Resumo:
Wearable antenna performance measurements were used to characterize a synthetic variable layered phantom testbed, representative of human tissue for operation in the 868/915 MHz, and 2400 MHz industrial, scientific and medical frequency bands. Antenna radiation efficiency measurements on the phantom were compared with measurements on the thorax region of a human test subject. The results show that the phantom is representative of the human body for the application of wireless vital sign monitors, where conductive connections are made to the tissue.