966 resultados para Palladium intermediates
Resumo:
Racemic (1R*,2R*)-1,2-dihydroxy-[1- 13C 1]propylphosphonic acid and 1-hydroxy-[1- 13C 1]acetone were synthesized and fed to R. huakuii PMY1. Alanine and a mixture of valine and methionine were isolated as their N-acetyl derivatives from the cell hydrolysate by reversed-phase HPLC and analyzed by NMR spectroscopy. It was found that the carbon atoms of the respective carboxyl groups were highly 13C-labeled (up to 65 %). Hydroxyacetone is therefore considered an obligatory intermediate of the biodegradation of fosfomycin by R. huakuii PMY1.
Resumo:
The reaction of 1-butylpyrrolidine with dimethyl carbonate to yield the ionic liquid precursor, 1-butyl-1-methylpyrrolidinium methylcarbonate, has been investigated under microwave heating conditions and the reaction parameters optimised to achieve 100% yield of the pyrrolidinium salt with no by-products in under 1 h. The reactions of tributylamine, trioctylphosphine, and 1-butylimidazole with dimethyl carbonate under comparable conditions have also been evaluated, yielding the corresponding methylcarbonate salts which can be used as intermediates for the preparation of halide-free ionic liquids without generating any undesirable salt wastes.
Resumo:
The performance optimisation of automotive catalysts has been the focus of a great deal of research for many years as the automotive industry has endeavored to reduce the emission of toxic and pollutant gases generated from internal combustion engines. Just as the emissions from diesel and gasoline combustion vary so do the emissions from combustion of alternative fuels such as ethanol; the variation is in both quantity and chemical composition. In particular, when ethanol is contained in the fuel, ethanol and acetaldehyde are present in the exhaust gas stream and these are two compounds which the catalytic converter has not traditionally been designed to manage. The aim of the study outlined in this paper was to assess the performance of various catalyst formulations when subjected to a representative ethanol exhaust gas mixture. Three automotive catalytic converter formulations were tested including a fully Pt sample, a PdRh three-way catalyst sample and a fully Pd sample. Initially the samples were tested using single component hydrocarbon light-off tests followed by a set of tests with carbon monoxide included as an inlet gas to observe its effect on each individual hydrocarbon oxidation. Finally, each formulation was tested using a full E85 exhaust gas mixture. The study was carried out using a synthetic gas reactor along with FTIR and FID exhaust gas analysers. All formulations showed selectivity toward acetaldehyde formation from ethanol dehydrogenation which resulted in negative acetaldehyde conversion across each of the samples during the mixture tests. The fully Pt sample was the most detrimentally affected by the introduction of carbon monoxide into the gas feed. The Pd and PdRh samples exhibited a tendency toward acetaldehyde decomposition resulting in methane and carbon monoxide formation. The Pt sample did not form methane but did form ethylene as a result of ethanol dehydration.
Resumo:
A wide range of organic pollutants can be destroyed by semiconductor photocatalysis using titania. The purification of water and air contaminated with organic pollutants has been investigated by semiconductor photocatalysis for many years and in attempts to improve the purification rate platinum and palladium have been deposited, usually as fine particles, on the titania surface. Such deposits are expected to improve the rate of reduction of oxygen and so reduce the probability of electron-hole recombination and increase the overall rate of the reaction. The effectiveness of the deposits is reviewed here and appears very variable with reported rate enhancement factors ranging from 8 to 0.1. Semiconductor photocatalysis can be used to purify air (at temperatures > 100 degrees C) and Pt deposits can markedly improve the overall rate of mineralisation. However, volatile organic compounds containing an heteroatom can deactivate the photocatalyst completely and irreversibly. Factors contributing to the success of the processes are considered. The use of chloro-Pt(IV)-titania and other chloro-platinum group metals-titania complexes as possible visible light sensitisers for water and air purification is briefly reviewed.
Resumo:
The photomineralisation of 4-chlorophenol (4-CP) sensitised by Degussa P25 TiO2 in O2-saturated solution represents a possible standard test system in semiconductor-sensitised photomineralisation studies. As part of a detailed examination of this photosystem, the results of the temporal variations in the concentrations of 4-CP, CO2, Cl- and the major organic intermediates, namely, 4-chlorocatechol (4-CC), hydroquinone (HQ), benzoquinone and 4-chlororesorcinol, are reported. The observed variations in [4-CP], [4-CC], [HQ] and [CO2] fit those predicted by a kinetic model which utilises kinetic equations with a Langmuir-Hinshelwood form and assumes that there are three major possible routes in which the photogenerated hydroxyl radicals can react with 4-CP, ie. 4-CP --> 4-CC, 4-CP --> HQ and 4-CP --> (unstable intermediate) --> CO2 and that these routes have the following probabilities of occurring: 48%, 10% and 42%.
Resumo:
A highly efficient palladium catalyzed decarboxylative allylic rearrangement of alloc indoles has been developed. This can also be combined with a Suzuki–Miyaura cross-coupling reaction in a single pot transformation. Substituted alloc groups and benzylic variants have also been demonstrated alongside promising initial results on the enantioselective variant.
Resumo:
For the first time, the hydrogenation/hydrogenolysis of a range of disulfides has been achieved over a supported palladium catalyst using hydrogen under relatively benign conditions. These unexpected results demonstrate that it is possible to avoid the poisoning of the catalyst by either the nitrogen-containing groups or the sulfur species, allowing both efficient reaction and recycling of the catalyst under the proper conditions (e.g., at low temperatures). A slight loss in activity was found on recycling; however, the catalyst activity can be recovered using hydrogen pretreatment. The reaction mechanism for the hydrogenolysis and hydrogenation of ortho-, meta-, and para-dinitrodiphenyldisulfide to the corresponding aminothiophenol has been elucidated. Density functional theory calculations were used to investigate the adsorption mode of the dinitrodiphenyldisulfides; a clear dependence on adsorption geometry was found regarding whether the molecule is cleaved at the S-S bond before the reduction of the nitro group or vice versa. This study demonstrates the versatility of these catalysts for the hydrogenation/hydrogenolysis of sulfur-containing molecules, which normally are considered poisons, and will extend their use to a new family of substrates. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Electron deficient active sites in Pd catalysts, either as films or on supports, are deliberately generated by calcining in O-2 at high temperature followed by the mildest possible reduction (with the reaction mixture itself), and are manifested by a marked shift from multiple to simple exchange in the cyclopentane/D-2 probe reaction.
Resumo:
This Letter reports in situ Fourier transform infrared (FTIR) spectroscopic data on thermal TiO films fabricated by heating titanium plates in air at 475, 700 and 800 °C. The films were studied in the dark and under UV-irradiation in aqueous 0.1MNaClO in the presence and absence of 0.1 M Na(OOC) and at 10, 25 and 50 °C. The film fabricated at 800 °C showed a broad feature near 1580cm under UV-irradiation that was not observed in the dark, whilst the films fabricated at lower temperatures, 475 and 700 °C, showed no such feature. This feature appears to be associated with the accumulation of surface-mobile holes at the complex, porous film-electrolyte interface and the capacity of such holes to enhance the absorption cross-section of optical phonons characteristic of the rutile crystal form at and near the surface of the TiO/electrolyte interface. © 2001 Elsevier Science B.V.
Resumo:
A series of palladium, platinum and manganese di(organo) carbene complexes have been prepared from 4-chloro-N-methylquinolinone by processes that involve alkylation before or after attachment to the metal unit; the nucleophilic heteroatoms necessary for eventual carbene formation and stabilisation are separated from the C-donor atom by three bonds.
Resumo:
Although the use of ball milling to induce reactions between solids (mechanochemical synthesis) can provide lower-waste routes to chemical products by avoiding solvent during the reaction, there are further potential advantages in using one-pot multistep syntheses to avoid the use of bulk solvents for the purification of intermediates. We report here two-step syntheses involving formation of salen-type ligands from diamines and hydroxyaldehydes followed directly by reactions with metal salts to provide the corresponding metal complexes. Five salen-type ligands 2,2'-[1,2-ethanediylbis[(E)-nitrilomethylidyne]] bisphenol, ` salenH2', 1; 2,2'-[(+/-)-1,2-cyclohexanediylbis-[(E)-nitrilomethylidyne]] bis-phenol, 2; 2,2'-[1,2-phenylenebis( nitrilomethylidyne)]-bis-phenol, ` salphenH2' 3; 2-[[(2-aminophenyl) imino] methyl]-phenol, 4; 2,2'-[(+/-)-1,2-cyclohexanediylbis[(E)-nitrilomethylidyne]]-bis[4,6-bis(1,1-dimethylethyl)]-phenol, ` Jacobsen ligand', 5) were found to form readily in a shaker-type ball mill at 0.5 to 3 g scale from their corresponding diamine and aldehyde precursors. Although in some cases both starting materials were liquids, ball milling was still necessary to drive those reactions to completion because precipitation of the product and or intermediates rapidly gave in thick pastes which could not be stirred conventionally. The only ligand which required the addition of solvent was the Jacobsen ligand 5 which required 1.75 mol equivalents of methanol to go to completion. Ligands 1-5 were thus obtained directly in 30-60 minutes in their hydrated forms, due to the presence of water by-product, as free-flowing yellow powders which could be dried by heating to give analytically pure products. The one-armed salphen ligand 4 could also be obtained selectively by changing the reaction stoichiometry to 1 : 1. SalenH(2) 1 was explored for the onepot two-step synthesis of metal complexes. In particular, after in situ formation of the ligand by ball milling, metal salts (ZnO, Ni(OAc)2 center dot 4H(2)O or Cu(OAc)(2)center dot H2O) were added directly to the jar and milling continued for a further 30 minutes. Small amounts of methanol (0.4-1.1 mol equivalents) were needed for these reactions to run to completion. The corresponding metal complexes [M(salen)] (M = Zn, 6; Ni, 7; or Cu, 8) were thus obtained quantitatively after 30 minutes in hydrated form, and could be heated briefly to give analytically pure dehydrated products. The all-at-once ` tandem' synthesis of [Zn(salen)] 6 was also explored by milling ZnO, ethylene diamine and salicylaldehyde together in the appropriate mole ratio for 60 minutes. This approach also gave the target complex selectively with no solvent needing to be added. Overall, these syntheses were found to be highly efficient in terms of time and the in avoidance of bulk solvent both during the reaction and for the isolation of intermediates. The work demonstrates the applicability of mechanochemical synthesis to one-pot multi-step strategies.
Resumo:
The ability of a gold palladium bimetallic catalyst to selectively oxidise toluene has been used to enhance the hydrocarbon selective catalytic reduction of NOx, a reaction in which the interaction of partial oxidation intermediates is considered important. The combination of gold with palladium has a synergistic effect, producing a catalyst that is more active for NOx conversion than the arithmetic sum of the corresponding mono-metallic materials. Three regimes in the conversion profile of the AuPd catalyst are proposed relating to production and consumption of toluene derived species, such as benzaldehyde and benzonitrile. The possible role of these reaction intermediates in the toluene HC-SCR reaction is examined. Using 15NO, the formation of N2 and N2O is observed via the direct interaction between the nitrogen atom of benzonitrile and 15NO. The higher activity of the bimetallic catalyst for the NOx reduction reaction by toluene is discussed in the context of these partial oxidation intermediates.
Resumo:
Palladium has a significant track record as a catalyst for a range of oxidation reactions and it has been explored for the selective oxidation of alcohols for many years. This chapter focuses on the two main types of aerobic Pd catalysts: heterogeneous and ligand-modulated systems. In the case of heterogeneous systems, the mechanistic understanding of these systems and the use of in situ and operando techniques to obtain this knowledge are discussed. The current state-of-the-art is also summarized in terms of catalytic performance and substrate scope for heterogeneous Pd-based catalysts. In terms of ligand-modulated systems, leading examples of molecular Pd(ii) catalysts which undergo direct O2 coupled turnover are highlighted. The catalyst performance for such catalysts is exemplified and mechanistic understanding for these molecular systems is discussed.
Resumo:
A simple catalyst system composed of Pd(OAc)2, phosphomolybdic acid and tetrabutylammonium acetate oxidises a range of alcohols efficiently, with turnover numbers (TONs) of up to 10 000.