913 resultados para POLYOXOMETALATE OXIDATION CATALYSTS
Resumo:
Nanoparticulate gold has emerged as a promising catalyst for diverse mild and efficient selective aerobic oxidations. However, the mechanism of such atom-economical transformations, and synergy with functional supports, remains poorly understood. Alkali-free Mg-Al hydrotalcites are excellent solid base catalysts for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furan dicarboxylic acid (FDCA), but only in concert with high concentrations of metallic gold nanoparticles. In the absence of soluble base, competitive adsorption between strongly-bound HMF and reactively-formed oxidation intermediates site-blocks gold. Aqueous NaOH dramatically promotes solution phase HMF activation, liberating free gold sites able to activate the alcohol function within the metastable 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) reactive intermediate. Synergistic effects between moderate strength base sites within alkali-free hydrotalcites and high gold surface concentrations can afford highly selective and entirely heterogeneous catalysts for aqueous phase aldehyde and alcohol cascade oxidations pertinent to biomass transformation.
Resumo:
This review discusses synthesis of enantiopure sulfoxides through the asymmetric oxidation of prochiral sulfides. The use of metal complexes to promote asymmetric sulfoxidation is described in detail, with a particular emphasis on the synthesis of biologically active sulfoxides. The use of non-metal-based systems, such as oxaziridines, chiral hydroperoxides and peracids, as well as enzyme-catalyzed sulfoxidations is also examined.
Resumo:
Palladium, platinum bimetallic catalysts supported on η-Al2O3, ZSM-5(23) and ZSM-5(80), with and without the addition of TiO2, were prepared and used for low temperature total methane oxidation (TMO). The catalysts were tested under reaction temperatures of 200-500 °C with a GHSV of 100,000 mL g-1 h-1. It was found that all four components, palladium, platinum, an acidic support and oxygen carrier were needed to achieve a highly active and stable catalyst. The optimum support being 17.5% TiO2 on ZSM-5(80) where the T10% was observed at only 200 °C. On addition of platinum, longer time on stream experiments showed no decrease in the catalyst activity over 50 h at 250 °C.
Resumo:
Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the bifunctional mechanism on PtSn catalyst. The positive influence of Sn was also confirmed in the PtSn nanoparticle catalyst prepared by the modification of commercial Pt/C nanoparticle and a higher activity was observed for PtSn (3:1) composition. The temperature-dependent data showed that the activation energy for butanol oxidation reaction over PtSn/C is lower than that over Pt/C.
Resumo:
The reaction of the Schiff base (3,5-di-tert-butyl-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H3L) with a copper(II) salt of a base of a strong acid, i.e., nitrate, chloride or sulphate, yielded the mononuclear complexes [Cu(H2L)(NO3)(H2O)] (1), [Cu(H2L)Cl]center dot 2MeOH (2) and the binuclear complex [{Cu(H2L)}(2)(mu-SO4)]center dot 2MeOH (3), respectively, with H2L- in the keto form. Compounds 1-3 were characterized by elemental analysis, Infrared (IR) spectroscopy, Electrospray Ionisation-Mass Spectrometry (ESI-MS) and single crystal X-ray crystallography. All compounds act as efficient catalysts towards the peroxidative oxidation of cyclohexane to cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone, under mild conditions. In the presence of an acid promoter, overall yields (based on the alkane) up to 25% and a turnover number (TON) of 250 (TOF of 42 h(-1)) after 6 h, were achieved.
Resumo:
La catalyse joue un rôle essentiel dans de nombreuses applications industrielles telles que les industries pétrochimique et biochimique, ainsi que dans la production de polymères et pour la protection de l’environnement. La conception et la fabrication de catalyseurs efficaces et rentables est une étape importante pour résoudre un certain nombre de problèmes des nouvelles technologies de conversion chimique et de stockage de l’énergie. L’objectif de cette thèse est le développement de voies de synthèse efficaces et simples pour fabriquer des catalyseurs performants à base de métaux non nobles et d’examiner les aspects fondamentaux concernant la relation entre structure/composition et performance catalytique, notamment dans des processus liés à la production et au stockage de l’hydrogène. Dans un premier temps, une série d’oxydes métalliques mixtes (Cu/CeO2, CuFe/CeO2, CuCo/CeO2, CuFe2O4, NiFe2O4) nanostructurés et poreux ont été synthétisés grâce à une méthode améliorée de nanocasting. Les matériaux Cu/CeO2 obtenus, dont la composition et la structure poreuse peuvent être contrôlées, ont ensuite été testés pour l’oxydation préférentielle du CO dans un flux d’hydrogène dans le but d’obtenir un combustible hydrogène de haute pureté. Les catalyseurs synthétisés présentent une activité et une sélectivité élevées lors de l’oxydation sélective du CO en CO2. Concernant la question du stockage d’hydrogène, une voie de synthèse a été trouvée pour le composét mixte CuO-NiO, démontrant une excellente performance catalytique comparable aux catalyseurs à base de métaux nobles pour la production d’hydrogène à partir de l’ammoniaborane (aussi appelé borazane). L’activité catalytique du catalyseur étudié dans cette réaction est fortement influencée par la nature des précurseurs métalliques, la composition et la température de traitement thermique utilisées pour la préparation du catalyseur. Enfin, des catalyseurs de Cu-Ni supportés sur silice colloïdale ou sur des particules de carbone, ayant une composition et une taille variable, ont été synthétisés par un simple procédé d’imprégnation. Les catalyseurs supportés sur carbone sont stables et très actifs à la fois dans l’hydrolyse du borazane et la décomposition de l’hydrazine aqueuse pour la production d’hydrogène. Il a été démontré qu’un catalyseur optimal peut être obtenu par le contrôle de l’effet bi-métallique, l’interaction métal-support, et la taille des particules de métal.
Resumo:
Titania modified nanoparticles have been prepared by the photodeposition method employing platinum particles on the commercially available titanium dioxide (Hombikat UV 100). The properties of the prepared photocatalysts were investigated by means of the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-visible diffuse spectrophotometry (UV-Vis). XRD was employed to determine the crystallographic phase and particle size of both bare and platinised titanium dioxide. The results indicated that the particle size was decreased with the increasing of platinum loading. AFM analysis showed that one particle consists of about 9 to 11 crystals. UV-vis absorbance analysis showed that the absorption edge shifted to longer wavelength for 0.5% Pt loading compared with bare titanium dioxide. The photocatalytic activity of pure and Pt-loaded TiO2 was investigated employing the photocatalytic oxidation and dehydrogenation of methanol. The results of the photocatalytic activity indicate that the platinized titanium dioxide samples are always more active than the corresponding bare TiO2 for both methanol oxidation and dehydrogenation processes. The loading with various platinum amounts resulted in a significant improvement of the photocatalytic activity of TiO2. This beneficial effect was attributed to an increased separation of the photogenerated electron-hole charge carriers.
Resumo:
The main objective of this study was to obtain an effective catalyst for removal of diazo dye - Sudan IV by Catalytic Wet Peroxide Oxidation (CWPO). For this purpose liquid phase treatment was used to increase the basicity of activated carbon surface favoring the adsorption of organic pollutants. Modified activated carbon catalysts were used in different types of experiments: 1) decomposition of H2O2 in aquatic media, 2) decomposition of H2O2 in organic media, 3) adsorption of Sudan IV, 4) Sudan IV removal by CWPO. As the result of all of these experiments the most effective catalyst was obtained and discussed. It was not observed removal of Sudan IV from biphasic system by CWPO. The obtained results in some cases show a slight increase in concentration of Sudan IV, which may be ascribed to experimental errors. Different factors could be the reason of those errors. For example, the high volatility properties of organic media used in experiments should be taken into account during experiments. Under settled reaction temperature the decrease of cyclohexane volume during experiment could give rise in Sudan IV concentration. The initial concentration of model diazo dye also should be reviewed more detailed for CWPO experiments. Despite of these experimental errors the behavior of our catalysts in different media was observed.
Resumo:
Terephthalic acid (PTA) is one of the monomers used for the synthesis of the polyester, polyethylene terephthalate (PET), that is used for the large-scale manufacture of synthetic fibers and plastic bottles. PTA is largely produced from the liquid-phase oxidation of petroleum-derived p-xylene (PX). However, there are now ongoing worldwide efforts exploring alternative routes for producing PTA from renewable, biomass resources.
In this thesis, I present a new route to PTA starting from the biomass-derived platform chemical, 5-hydroxymethylfurfural (HMF). This route utilizes new, selective Diels-Alder-dehydration reactions involving ethylene and is advantageous over the previously proposed Diels-Alder-dehydration route to PTA from HMF via 2,5-dimethylfuran (DMF) since the H2 reduction of HMF to DMF is avoided. Specifically, oxidized derivatives of HMF are reacted as is, or after etherification-esterification with methanol, with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids in order to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA) is reacted with high pressure ethylene over a pure-silica molecular sieve catalyst containing framework tin (Sn-Beta) to produce the Diels-Alder-dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with ~30% selectivity at ~20% yield. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with >70% selectivity at >20% yield. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder-dehydration product is observed.
An investigation to elucidate the reaction network and side products in the conversion of MMFC to MMBC was performed, and the main side products are found to be methyl 4-formylcyclohexa-1,3-diene-1-carboxylate and the ethylene Diels-Alder adduct of this cyclohexadiene. These products presumably form by a different dehydration pathway of the MMFC/ethylene Diels-Alder adduct and should be included when determining the overall selectivity to PTA or DMT since, like MMBC, these compounds are precursors to PTA or DMT.
Fundamental physical and chemical information on the ethylene Diels-Alder-dehydration reactions catalyzed by the Lewis acid-containing molecular sieves was obtained. Madon-Boudart experiments using Zr-Beta as catalyst show that the reaction rates are limited by chemical kinetics only (physical transport limitations are not present), all the Zr4+ centers are incorporated into the framework of the molecular sieve, and the whole molecular sieve crystal is accessible for catalysis. Apparent activation energies using Zr-Beta are low, suggesting that the overall activation energy of the system may be determined by a collection of terms and is not the true activation energy of a single chemical step.
Resumo:
Doutoramento em Engenharia dos Biossistemas - Instituto Superior de Agronomia - UL
Resumo:
Catalysts consisting in platinum supported on cerium oxide highly dispersed on activated carbon, with a Pt loading of 1 wt.% and ceria loadings of 5, 10 and 20 wt.% have been prepared by impregnation method and characterized by several techniques (N2 adsorption at 77 K, ICP, XRD, H2-TPR and XPS). Their catalytic behavior has been evaluated in the total oxidation of ethanol and toluene after reduction at 473 K. The obtained results show that the prepared catalysts have better performances than platinum supported on bulk CeO2. The best catalytic performance was obtained for 10 wt.% ceria loading, likely due to an optimum synergistic interaction between highly dispersed cerium oxide and platinum particles. Pt-10Ce/C achieves total conversion of ethanol and toluene to CO2 at 433 K and 453 K, respectively, and shows no deactivation during a test for 100 h. Under humid conditions (relative humidity, RH, of 40 and 80%), the activity was only slightly influenced due to the hydrophobic character of the activated carbon support, which prevents the adsorption of water.
Resumo:
Structure–activity relationships for 1 wt.% Pt catalysts were investigated for a series of TixCe(1−x)O2 (x = 1, 0.98, 0.9, 0.5, 0.2 and 0) supports prepared by the sol–gel method. The catalysts prepared by impregnation were characterized in detail by applying a wide range of techniques as N2-isotherms, XRF, XRD, Raman, XPS, H2-TPR, Drifts, UV–vis, etc. and tested in the preferential oxidation of CO in the presence of H2. Also several reaction conditions were deeply analyzed. A strong correlation between catalyst performance and the electronic properties let us to propose, based in all the experimental results, a plausible reaction mechanism where several redox cycles are involved.
Resumo:
CuO supported on CeO2 and Ce0.9X0.1O2, where X is Zr, La, Tb or Pr, were synthesized using nitrate precursors, giving rise ceria based materials with a small particle size which interact with CuO species generating a high amount of interfacial sites. The incorporation of cations to the ceria framework modifies the CeO2 lattice parameter, improving the redox behavior of the catalytic system. The catalysts were characterized by X-ray fluorescence spectrometry (XRFS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, thermoprogrammed reduction with H2 (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The catalysts were tested in the preferential oxidation of CO under a H2-rich stream (CO-PROX), reaching conversion values higher than 95% between 115 and 140 °C and being the catalyst with 6 wt.% of Cu supported on Ce0.9Zr0.1O2 (sample 6CUZRCE) the most active catalyst. The influence of the presence of CO2 and H2O was also studied simulating a PROX unit, taking place a decrease of the catalytic activity due to the inhibitor effect both CO2 and H2O.