855 resultados para Mixed-integer
Resumo:
The integrated production scheduling and lot-sizing problem in a flow shop environment consists of establishing production lot sizes and allocating machines to process them within a planning horizon in a production line with machines arranged in series. The problem considers that demands must be met without backlogging, the capacity of the machines must be respected, and machine setups are sequence-dependent and preserved between periods of the planning horizon. The objective is to determine a production schedule to minimise the setup, production and inventory costs. A mathematical model from the literature is presented, as well as procedures for obtaining feasible solutions. However, some of the procedures have difficulty in obtaining feasible solutions for large-sized problem instances. In addition, we address the problem using different versions of the Asynchronous Team (A-Team) approach. The procedures were compared with literature heuristics based on Mixed Integer Programming. The proposed A-Team procedures outperformed the literature heuristics, especially for large instances. The developed methodologies and the results obtained are presented.
Resumo:
In this paper, we propose three novel mathematical models for the two-stage lot-sizing and scheduling problems present in many process industries. The problem shares a continuous or quasi-continuous production feature upstream and a discrete manufacturing feature downstream, which must be synchronized. Different time-based scale representations are discussed. The first formulation encompasses a discrete-time representation. The second one is a hybrid continuous-discrete model. The last formulation is based on a continuous-time model representation. Computational tests with state-of-the-art MIP solver show that the discrete-time representation provides better feasible solutions in short running time. On the other hand, the hybrid model achieves better solutions for longer computational times and was able to prove optimality more often. The continuous-type model is the most flexible of the three for incorporating additional operational requirements, at a cost of having the worst computational performance. Journal of the Operational Research Society (2012) 63, 1613-1630. doi:10.1057/jors.2011.159 published online 7 March 2012
Resumo:
We deal with the optimization of the production of branched sheet metal products. New forming techniques for sheet metal give rise to a wide variety of possible profiles and possible ways of production. In particular, we show how the problem of producing a given profile geometry can be modeled as a discrete optimization problem. We provide a theoretical analysis of the model in order to improve its solution time. In this context we give the complete convex hull description of some substructures of the underlying polyhedron. Moreover, we introduce a new class of facet-defining inequalities that represent connectivity constraints for the profile and show how these inequalities can be separated in polynomial time. Finally, we present numerical results for various test instances, both real-world and academic examples.
Resumo:
In this paper, a general scheme for generating extra cuts during the execution of a Benders decomposition algorithm is presented. These cuts are based on feasible and infeasible master problem solutions generated by means of a heuristic. This article includes general guidelines and a case study with a fixed charge network design problem. Computational tests with instances of this problem show the efficiency of the strategy. The most important aspect of the proposed ideas is their generality, which allows them to be used in virtually any Benders decomposition implementation.
Resumo:
Setup operations are significant in some production environments. It is mandatory that their production plans consider some features, as setup state conservation across periods through setup carryover and crossover. The modelling of setup crossover allows more flexible decisions and is essential for problems with long setup times. This paper proposes two models for the capacitated lot-sizing problem with backlogging and setup carryover and crossover. The first is in line with other models from the literature, whereas the second considers a disaggregated setup variable, which tracks the starting and completion times of the setup operation. This innovative approach permits a more compact formulation. Computational results show that the proposed models have outperformed other state-of-the-art formulation.
Resumo:
This work presents hybrid Constraint Programming (CP) and metaheuristic methods for the solution of Large Scale Optimization Problems; it aims at integrating concepts and mechanisms from the metaheuristic methods to a CP-based tree search environment in order to exploit the advantages of both approaches. The modeling and solution of large scale combinatorial optimization problem is a topic which has arisen the interest of many researcherers in the Operations Research field; combinatorial optimization problems are widely spread in everyday life and the need of solving difficult problems is more and more urgent. Metaheuristic techniques have been developed in the last decades to effectively handle the approximate solution of combinatorial optimization problems; we will examine metaheuristics in detail, focusing on the common aspects of different techniques. Each metaheuristic approach possesses its own peculiarities in designing and guiding the solution process; our work aims at recognizing components which can be extracted from metaheuristic methods and re-used in different contexts. In particular we focus on the possibility of porting metaheuristic elements to constraint programming based environments, as constraint programming is able to deal with feasibility issues of optimization problems in a very effective manner. Moreover, CP offers a general paradigm which allows to easily model any type of problem and solve it with a problem-independent framework, differently from local search and metaheuristic methods which are highly problem specific. In this work we describe the implementation of the Local Branching framework, originally developed for Mixed Integer Programming, in a CP-based environment. Constraint programming specific features are used to ease the search process, still mantaining an absolute generality of the approach. We also propose a search strategy called Sliced Neighborhood Search, SNS, that iteratively explores slices of large neighborhoods of an incumbent solution by performing CP-based tree search and encloses concepts from metaheuristic techniques. SNS can be used as a stand alone search strategy, but it can alternatively be embedded in existing strategies as intensification and diversification mechanism. In particular we show its integration within the CP-based local branching. We provide an extensive experimental evaluation of the proposed approaches on instances of the Asymmetric Traveling Salesman Problem and of the Asymmetric Traveling Salesman Problem with Time Windows. The proposed approaches achieve good results on practical size problem, thus demonstrating the benefit of integrating metaheuristic concepts in CP-based frameworks.
Resumo:
In this thesis we address a collection of Network Design problems which are strongly motivated by applications from Telecommunications, Logistics and Bioinformatics. In most cases we justify the need of taking into account uncertainty in some of the problem parameters, and different Robust optimization models are used to hedge against it. Mixed integer linear programming formulations along with sophisticated algorithmic frameworks are designed, implemented and rigorously assessed for the majority of the studied problems. The obtained results yield the following observations: (i) relevant real problems can be effectively represented as (discrete) optimization problems within the framework of network design; (ii) uncertainty can be appropriately incorporated into the decision process if a suitable robust optimization model is considered; (iii) optimal, or nearly optimal, solutions can be obtained for large instances if a tailored algorithm, that exploits the structure of the problem, is designed; (iv) a systematic and rigorous experimental analysis allows to understand both, the characteristics of the obtained (robust) solutions and the behavior of the proposed algorithm.
Resumo:
The research for exact solutions of mixed integer problems is an active topic in the scientific community. State-of-the-art MIP solvers exploit a floating- point numerical representation, therefore introducing small approximations. Although such MIP solvers yield reliable results for the majority of problems, there are cases in which a higher accuracy is required. Indeed, it is known that for some applications floating-point solvers provide falsely feasible solutions, i.e. solutions marked as feasible because of approximations that would not pass a check with exact arithmetic and cannot be practically implemented. The framework of the current dissertation is SCIP, a mixed integer programs solver mainly developed at Zuse Institute Berlin. In the same site we considered a new approach for exactly solving MIPs. Specifically, we developed a constraint handler to plug into SCIP, with the aim to analyze the accuracy of provided floating-point solutions and compute exact primal solutions starting from floating-point ones. We conducted a few computational experiments to test the exact primal constraint handler through the adoption of two main settings. Analysis mode allowed to collect statistics about current SCIP solutions' reliability. Our results confirm that floating-point solutions are accurate enough with respect to many instances. However, our analysis highlighted the presence of numerical errors of variable entity. By using the enforce mode, our constraint handler is able to suggest exact solutions starting from the integer part of a floating-point solution. With the latter setting, results show a general improvement of the quality of provided final solutions, without a significant loss of performances.
Resumo:
Im operativen Betrieb einer Stückgutspeditionsanlage entscheidet der Betriebslenker bzw. der Disponent in einem ersten Schritt darüber, an welche Tore die Fahrzeuge zur Be- und Entladung andocken sollen. Darüber hinaus muss er für jede Tour ein Zeitfenster ausweisen innerhalb dessen sie das jeweilige Tor belegt. Durch die örtliche und zeitliche Fahrzeug-Tor-Zuordnung wird der für den innerbetrieblichen Umschlagprozess erforderliche Ressourcenaufwand in Form von zu fahrenden Wegstrecken oder aber Gabelstaplerstunden bestimmt. Ein Ziel der Planungsaufgabe ist somit, die Zuordnung der Fahrzeuge an die Tore so vorzunehmen, dass dabei minimale innerbetriebliche Wegstrecken entstehen. Dies führt zu einer minimalen Anzahl an benötigten Umschlagmittelressourcen. Darüber hinaus kann es aber auch zweckmäßig sein, die Fahrzeuge möglichst früh an die Tore anzudocken. Jede Tour verfügt über einen individuellen Fahrplan, der Auskunft über den Ankunftszeitpunkt sowie den Abfahrtszeitpunkt der jeweiligen Tour von der Anlage gibt. Nur innerhalb dieses Zeitfensters darf der Disponent die Tour einem der Tore zuweisen. Geschieht die Zuweisung nicht sofort nach Ankunft in der Anlage, so muss das Fahrzeug auf einer Parkfläche warten. Eine Minimierung der Wartezeiten ist wünschenswert, damit das Gelände der Anlage möglichst nicht durch zuviele Fahrzeuge gleichzeitig belastet wird. Es kann vor allem aber auch im Hinblick auf das Reservieren der Tore für zeitkritische Touren sinnvoll sein, Fahrzeuge möglichst früh abzufertigen. Am Lehrstuhl Verkehrssysteme und -logistik (VSL) der Universität Dortmund wurde die Entscheidungssituation im Rahmen eines Forschungsprojekts bei der Stiftung Industrieforschung in Anlehnung an ein zeitdiskretes Mehrgüterflussproblem mit unsplittable flow Bedingungen modelliert. Die beiden Zielsetzungen wurden dabei in einer eindimensionalen Zielfunktion integriert. Das resultierende Mixed Integer Linear Programm (MILP) wurde programmiert und für mittlere Szenarien durch Eingabe in den Optimization Solver CPlex mit dem dort implementierten exakten Branch-and-Cut Verfahren gelöst. Parallel wurde im Rahmen einer Kooperation zwischen dem Lehrstuhl VSL und dem Unternehmen hafa Docking Systems, einem der weltweit führenden Tor und Rampenhersteller, für die gleiche Planungsaufgabe ein heuristisches Scheduling Verfahren sowie ein Dispositionsleitstand namens LoadDock Navigation entwickelt. Der Dispositionsleitstand dient der optimalen Steuerung der Torbelegungen in logistischen Anlagen. In dem Leitstand wird planerische Intelligenz in Form des heuristischen Schedulingverfahrens, technische Neuerungen in der Rampentechnik in Form von Sensoren und das Expertenwissen des Disponenten in einem Tool verbunden. Das mathematische Modell sowie der Prototyp mit der integrierten Heuristik werden im Rahmen dieses Artikels vorgestellt.
Resumo:
In reverse logistics networks, products (e.g., bottles or containers) have to be transported from a depot to customer locations and, after use, from customer locations back to the depot. In order to operate economically beneficial, companies prefer a simultaneous delivery and pick-up service. The resulting Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP) is an operational problem, which has to be solved daily by many companies. We present two mixed-integer linear model formulations for the VRPSDP, namely a vehicle-flow and a commodity-flow model. In order to strengthen the models, domain-reducing preprocessing techniques, and effective cutting planes are outlined. Symmetric benchmark instances known from the literature as well as new asymmetric instances derived from real-world problems are solved to optimality using CPLEX 12.1.
Resumo:
In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.
Resumo:
The execution of a project requires resources that are generally scarce. Classical approaches to resource allocation assume that the usage of these resources by an individual project activity is constant during the execution of that activity; in practice, however, the project manager may vary resource usage over time within prescribed bounds. This variation gives rise to the project scheduling problem which consists in allocating the scarce resources to the project activities over time such that the project duration is minimized, the total number of resource units allocated equals the prescribed work content of each activity, and various work-content-related constraints are met. We formulate this problem for the first time as a mixed-integer linear program. Our computational results for a standard test set from the literature indicate that this model outperforms the state-of-the-art solution methods for this problem.
Resumo:
Due to the ongoing trend towards increased product variety, fast-moving consumer goods such as food and beverages, pharmaceuticals, and chemicals are typically manufactured through so-called make-and-pack processes. These processes consist of a make stage, a pack stage, and intermediate storage facilities that decouple these two stages. In operations scheduling, complex technological constraints must be considered, e.g., non-identical parallel processing units, sequence-dependent changeovers, batch splitting, no-wait restrictions, material transfer times, minimum storage times, and finite storage capacity. The short-term scheduling problem is to compute a production schedule such that a given demand for products is fulfilled, all technological constraints are met, and the production makespan is minimised. A production schedule typically comprises 500–1500 operations. Due to the problem size and complexity of the technological constraints, the performance of known mixed-integer linear programming (MILP) formulations and heuristic approaches is often insufficient. We present a hybrid method consisting of three phases. First, the set of operations is divided into several subsets. Second, these subsets are iteratively scheduled using a generic and flexible MILP formulation. Third, a novel critical path-based improvement procedure is applied to the resulting schedule. We develop several strategies for the integration of the MILP model into this heuristic framework. Using these strategies, high-quality feasible solutions to large-scale instances can be obtained within reasonable CPU times using standard optimisation software. We have applied the proposed hybrid method to a set of industrial problem instances and found that the method outperforms state-of-the-art methods.
Resumo:
This paper deals with an event-bus tour booked by Bollywood film fans. During the tour, the participants visit selected locations of famous Bollywood films at various sites in Switzerland. Moreover, the tour includes stops for lunch and shopping. Each day, up to five buses operate the tour; for organizational reasons, two or more buses cannot stay at the same location simultaneously. The planning problem is how to compute a feasible schedule for each bus such that the total waiting time (primary objective) and the total travel time (secondary objective) are minimized. We formulate this problem as a mixed-integer linear program, and we report on computational results obtained with the Gurobi solver.
Resumo:
Environmental constraints imposed on hydropoweroperation are usually given in the form of minimum environmental flows and maximum and minimum rates of change of flows, or ramp rates. One solution proposed to mitigate the environmental impact caused by the flows discharged by a hydropower plant while reducing the economic impact of the above-mentioned constraints consists in building a re-regulationreservoir, or afterbay, downstream of the power plant. Adding pumpingcapability between the re-regulationreservoir and the main one could contribute both to reducing the size of the re-regulationreservoir, with the consequent environmental improvement, and to improving the economic feasibility of the project, always fulfilling the environmental constraints imposed to hydropoweroperation. The objective of this paper is studying the contribution of a re-regulationreservoir to fulfilling the environmental constraints while reducing the economic impact of said constraints. For that purpose, a revenue-driven optimization model based on mixed integer linear programming is used. Additionally, the advantages of adding pumpingcapability are analysed. In order to illustrate the applicability of the methodology, a case study based on a real hydropower plant is presented