877 resultados para Mechanical behavior
Resumo:
A severe shortage of good quality donor cornea is now an international crisis in public health. Alternatives for donor tissue need to be urgently developed to meet the increasing demand for corneal transplantation. Hydrogels have been widely used as scaffolds for corneal tissue regeneration due to their large water content, similar to that of native tissue. However, these hydrogel scaffolds lack the fibrous structure that functions as a load-bearing component in the native tissue, resulting in poor mechanical performance. This work shows that mechanical properties of compliant hydrogels can be substantially enhanced with electrospun nanofiber reinforcement. Electrospun gelatin nanofibers were infiltrated with alginate hydrogels, yielding transparent fiber-reinforced hydrogels. Without prior crosslinking, electrospun gelatin nanofibers improved the tensile elastic modulus of the hydrogels from 78±19. kPa to 450±100. kPa. Stiffer hydrogels, with elastic modulus of 820±210. kPa, were obtained by crosslinking the gelatin fibers with carbodiimide hydrochloride in ethanol before the infiltration process, but at the expense of transparency. The developed fiber-reinforced hydrogels show great promise as mechanically robust scaffolds for corneal tissue engineering applications. © 2013 Elsevier Ltd.
Resumo:
The fracture behavior of thin films of bitumen in double cantilever beam (DCB) specimens was investigated over a wide range of temperature and loading rate conditions using finite-element analysis. The model includes a phenomenological model for the mechanical behavior of bitumen, implemented into a special-purpose finite-element user material subroutine, combined with a cohesive zone model (CZM) for simulating the fracture process. The finite-element model is validated against experimental results from laboratory tests of DCB specimens by comparing measured and predicted load-line deflection histories and fracture energy release rates. Computer simulation results agreed well with experimental data of DCB joints containing bitumen films in terms of peak stress, fracture toughness, and stress-strain history response. The predicted "normalized toughness," G=2h, was found to increase in a power-law manner with effective temperaturecompensated strain rate in the ductile region as previously observed experimentally. In the brittle regime, G=2h is virtually constant. The model successfully captured the ductile and brittle failure behavior of bitumen films in opening mode (tension) for stable crack growth conditions. © 2013 American Society of Civil Engineers.
Resumo:
The deformation of [0001]-oriented ZnO nanorods with hexagonal cross sections under uniaxial tensile loading is analyzed through molecular statistical thermodynamics (MST) simulations. The focus is on the size dependence of mechanical behavior in ZnO nanorods with diameters ranging from 1.95 to 17.5 nm. An irreversible phase transformation from the wurtzite (P6(3)mc space group) structure to a tetragonal structure (P4(2)/mnm space group) occurs during the tensile loading process. Young's modulus before the transformation demonstrates a size dependence consistent with what is observed in experiments. A stronger size dependence of response is seen after the transformation and is attributed to the polycrystalline nature of the transformed structure. A comparison of the MST and molecular dynamics (MD) methods shows that MST is 60 times faster than MD and yields results consistent with the results of MD.
Resumo:
The superconducting magnet of the LPT (Lanzhou Penning trap) consists of nine coaxial coils. The maximum magnetic field is 7 T and thus results in a large magnetic force. In order to assure the mechanical stability, it is necessary to do the stress analysis of the magnet system. The 3D Finite Element Analysis of thermal and mechanical behavior was presented in this paper. For the numerical simulation and analysis of the phenomena inside the structure, the ADINA and TOSCA code were chosen right from start. The ADINA code is commonly used for numerical simulations of the structure analysis [1] and the TOSCA code is professional software to calculate the magnetic field and Lorentz Forces. The results of the analysis were evaluated in terms of the stress and deformation.
Resumo:
3,3',4,4'-Diphenylthioether dianhydride (4,4'-TDPA), 2,3,3',4'-diphenylthioether dianhydride (3,4'-TDPA), and 2,2',3,3-diphenylthioether dianhydride (3,3'TDPA) were synthesized from 3-chlorophthalic anhydride and 4-chlorophthalic anhydride. A series of polyimides derived from the isomeric diphenylthioether dianhydrides with several diamines were prepared. The properties, such as the solubility, thermal and mechanical behavior, dynamic mechanical behavior, wide-angle X-ray diffraction, and permeability to some gases, were compared among the isomeric polyimides. Both 3,3'-TDPA- and 3,4-TDPA-based polyimides had good solubility in polar aprotic solvents and phenols. The 5% weight loss temperatures of all the obtained polyimides was near 500 degrees C in nitrogen. The glass-transition temperatures decreased according to the order of the polyimides based on 3,3'-TDPA, 3,4'-TDPA, and 4,4'-TDPA. The 3,4'-TDPA-based polyimides had the best permeability and lowest permselectivity, whereas the 4,4'-TDPA-based polyimides had the highest permselectivity and the lowest permeability of the three isomers. Furthermore, the rheological properties of thermoplastic polyimide resins based on the isomeric dipbenylthioether dianhydrides were investigated, and they showed that polyimide 3,4'-TDPA/4,4-oxydianiline had the lowest melt viscosity among the isomers; this indicated that the melt processibility had been greatly improved.
Resumo:
The branched copolymers prepared from ethylene and alpha-olefins using rac-Et(Ind)(2)ZrCl2/MMAO catalyst system were studied. Both the absolute molecular weight ((M) over bar (W)) and the molecular size (radius of glyration, R-g) of the polymers eluting from gel permeation chromatography (GPC) columns were obtained simultaneously via a high temperature GPC coupled with a two-angle laser light scattering (TALLS) detector. The branched structures and performances of the copolymers display approximate molecular weight and molecular sizes were investigated. Wide angle X-ray diffraction analyses indicate that 16-carbon side branch could co-crystallize effectively with backbone chain at low alpha-olefin incorporation. The melt behaviors of the copolymers were studied by dynamic rheological measurements. Both branch length and comonomer content affect considerably the loss modulus, storage modulus and complex viscosity of the copolymers. The relationship between the dynamic-mechanical behavior and the comonomer content of the copolymers was also examined by dynamic-mechanical experiments.
Resumo:
The graft copolymer of high-impact polystyrene (HIPS) grafted with maleic anhydride (MA) (HIPS-g-MA) was prepared with melt mixing in the presence of a free-radical initiator. The grafting reaction was confirmed by infrared analyses, and the amount of MA grafted on HIPS was evaluated by a titration method. 1-5% of MA can be grafted on HIPS. HIPS-g-MA is miscible with HIPS. Its anhydride group can react with polyamide 1010 (PA1010) during melt mixing of the two components. The compatibility of HIPS-g-MA. in the HIPS/PA1010 blends was evident. Evidence of reactions in the blends was confirmed in the morphology and mechanical behavior of the blends. A significant reduction in domain size was observed because of the compatibilization of HIPS-g-MA in the blends of HIPS and PA1010. The tensile mechanical properties of the prepared blends were investigated, and the fracture surfaces of the blends were examined by means of the scanning electron microscope. The improved adhesion in a 15% HIPS/75% PA1010 blend with 10% HIPS-g-MA copolymer was detected. The morphology of fibrillar ligaments formed by PA1010 connecting HIPS particles was observed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
1,4-Bis(2,3-dicarboxyphenoxy)benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy)benzene dianhydride, bis(2,3-dicarboxyphenoxy) sulfide dianhydride, bis (3,4-dicarboxyphenoxy)sulfide dianhydride, and 2,3,3',4'-tetracarboxy diphenyl sulfide dianhydride were synthesized from 3-chlorophthalic anhydride and 4-chlorophthalic anhydride. Bis(2,3-dicarboxyphenyl)sulfone and bis(3,4-dicarboxyphenyl) sulfone were obtained by the oxidation of the corresponding bis(dicarboxyphenyl)sulfide by hydrogen peroxide. The polyimides from the dianhydrides mentioned above and 4,4'-oxydianiline were prepared. The properties, such as dynamic mechanical behavior, thermooxidative stability, stress-strain behavior, chemical resistance, and permeability to some gases have been in investigated for the isomeric polyimides. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Stress relaxation and dynamic mechanical behavior of phenolphthalein poly(ether ketone) (PEK-C) have been investigated. Using Ferry's reduction method, the master curve was obtained. From the experimental results, we found that the WLF equation is not appropriate in the lower-temperature range (T < T-g). The relaxation spectrum was calculated according to the first approximation method proposed by Schwarzl and Staverman. In addition to the alpha-transition region, a second transition zone is revealed at low temperature. This transition is probably due to a restricted motion of its main chain. (C) 1995 John Wiley and Sons, Inc.
Resumo:
The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3 m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 mu m), (ii) the bulky axial cylinder (radius: <75 mu m), and (iii) the central axial canal (diameter: <2 mu m) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 mu m large holes; the net can be silicified. The silica layers forming the lamellar zone are approximate to 5 mu m thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.
Resumo:
As we all know, rock-like materials will absolutely show very different mechanical properties under the compressive stress and tensile stress respectively. Similarly, under the dynamic compressive stress or dynamic tensile stress, the characteristics of the dynamics showed by the rock-like materials also have great differences from the mechanical behavior under static force. Studying their similarities and differences in rock mechanics theory and practical engineering will be of great significance. Generally, there are compression modulus of elasticity and tensile modulus of elasticity corresponding to compressive stress state and the tensile stress state in the rock. Both the two kinds of elastic modulus play an extremely important role in calculation of engineering mechanics. Their reliability directly affects the accuracy and reliability of the calculation results of internal stress field and displacement field of engineering rock mass. At present, it is easy to obtain the compression modulus of elasticity in laboratory; but it is very difficult to determine the tensile modulus of elasticity with direct tensile test due to that direct tensile test is difficult to perform in laboratory in general. In order to solve this problem, this thesis invents and develops several indirect test methods to determine the static or dynamic tensile modulus of elasticity of rock-type materials with high reliability and good interoperability. For the static tensile modulus of elasticity, the analytical stress field solution has been given out for the Brazilian disc under the radial and linear concentration load with Airy stress function method. At the same time, the stress field has been modeled for the Brazilian disc test by using the finite element software of ANSYS and ADINA. The analytical stress field solution is verified to be right by comparatively researching the analytical stress field solution and the numerical stress field solution. Based on the analytical stress field solution, this thesis proposes that a strain gauge is pasted at the Brazilian disc center along the direction perpendicular to the applied force to indirectly determine the static tensile modulus of elasticity, and related measurement theory also has been developed. The method proposed here has good feasibility and high accuracy verified by the experimental results. For the dynamic tensile modulus of elasticity, two measuring methods and theories are invented here. The first one is that the Split Hopkinson Pressure Bar is used to attract the Brazilian disc to generate the dynamic load, make the dynamic tensile stress is formed at the Brazilian disc center; and also a strain gauge is pasted at the Brazilian disc center to record the deformation. The second is that, in the Hopkinson effect phenomenon, the reflection tensile stress wave is formed when the shock wave propagates to the free end of cylindrical rock bar and reflect, which can make the rock bar is under dynamic tensile stress state; and some strain gauges are pasted at the appropriate place on the rock bar to record the strain coursed by the tensile or compressive stress wave. At last, the dynamic tensile modulus of elasticity can be determined by the recorded strain and the dynamic tensile stress which can be determined by related theories developed in this thesis.
Resumo:
The South continent of China lies to southeast of Eurasia block. It is an active area from the view of crust growth and continent spread and is a transition zone between continental crust and oceanic crust. The compressional wave velocities and anisotropies of typical crustal metamorphic rocks were determined at high temperature (up to 1000 ℃) and high pressure(up to 800MPa). The experimental results show that the velocities generally increase with pressure, and is unaffected by temperature up to around 550 ℃. But the velocities of all experimental samples start to drop above a temperature point. For an example, this greatly reduce the speed of wave propagation in amphibolite and serpentinite above 760 ℃ and above 550 ℃ respectively, which may be due to dehydrate of amphibole and serpentine. P-wave anisotropy coefficients of those rocks range from 2% to 10% at 800MPa and 500 ℃. The anisotropies decrease with increasing pressure at room temperature, but hardly change as function of temperature at constant 800MPa or 600MPa pressure. The average velocity of the six crustal rocks is 6.28km/s under the condition of 800MPa and 550 ℃, which is consistent with the result of deep seismic sounding data. Based on this experimental result, we deduce there may exist a lot of felsic granulites and amphibolites at the depth of 15-25km underground. With increasing temperature and pressure, the deformation behavior of the rocks undergoes from localized brittle fracture, semi-brittle deformation (cataclastic flow or semi-brittle faulting, semi-brittle flow) to homogeneous crystal-plastic flow. This transition is associated with mechanical behavior and micro-mechanism. It is very important to understanding earthquake source mechanics, the strength of the lithosphere and the style of deformation. The experiments were conducted at temperature of 600-1000 ℃, confining pressure of 500MPa, and stain rates of 10~(-4)-10~(-6) S~(-1). For fine-grained natural amphibolite, the results of experiments show that brittle faulting is major failure mode at temperature <600 ℃, but crystal-plastic deformation is dominate at temperature >800 ℃, and there is a transition with increasing temperature from sembrittle faulting to cataclastic flow and sembrittle flow at temperature of 670-750 ℃. For medium-grained natural Felsic granulite, the results of experiments show that brittle faulting is major failure mode at temperature <500 ℃, but crystal-plastic deformation is dominate at temperature >700 ℃, and there is a transition with increasing temperature from semibrittle faulting to cataclastic flow and sembrittle flow at temperature of 500-600 ℃.
Resumo:
Flexible Circuit Boards (FPCs) are now being widely used in the electronic industries especially in the areas of electronic packages. Due to European lead-free legislation which has been implemented since July 2006, electronic packaging industries have to switch to use in the lead-free soldering technology. This change has posed a number of challenges in terms of development of lead-free solders and compatible substrates. An increase of at least 20-50 degrees in the reflow temperature is a concern and substantial research is required to investigate a sustainable design of flexible circuit boards as carrier substrates. This paper investigates a number of design variables such as copper conductor width, type of substrate materials, effect of insulating materials, etc. Computer modeling has been used to investigate thermo-mechanical behavior, and reliability, of flexible substrates after they have been subjected to a lead- free solder processing. Results will show particular designs that behave better for a particular rise in peak reflow temperature. Also presented will be the types of failures that can occur in these substrates and what particular materials are more reliable.
Resumo:
Polyamide and polystyrene particles were coated with titanium dioxide films by atomic layer deposition (ALD) and then melt-compounded to form polymer nanocomposites. The rheological properties of the ALD-created nanocomposite materials were characterized with a melt flow indexer, a melt flow spiral mould, and a rotational rheometer. The results suggest that the melt flow properties of polyamide nanocomposites were markedly better than those of pure polyamide and polystyrene nanocomposites. Such behavior was shown to originate in an uncontrollable decrease in the polyamide molecular weight, likely affected by a high thin-film impurity content, as shown in gel permeation chromatography (GPC) and scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer. Transmission electron microscope image showed that a thin film grew on both studied polymer particles, and that subsequent melt-compounding was successful, producing well dispersed ribbon-like titanium dioxide with the titanium dioxide filler content ranging from 0.06 to 1.12wt%. Even though we used nanofillers with a high aspect ratio, they had only a minor effect on the tensile and flexural properties of the polystyrene nanocomposites. The mechanical behavior of polyamide nanocomposites was more complex because of the molecular weight degradation. Our approach here to form polymeric nanocomposites is one way to tailor ceramic nanofillers and form homogenous polymer nanocomposites with minimal work-related risks in handling powder form nanofillers. However, further research is needed to gauge the commercial potential of ALD-created nanocomposite materials. Copyright (C) 2011 John Wiley & Sons, Ltd.