华南地壳岩石弹性和变形性质的高温高压实验研究


Autoria(s): 黄晓葛
Contribuinte(s)

白武明

Data(s)

2001

Resumo

The South continent of China lies to southeast of Eurasia block. It is an active area from the view of crust growth and continent spread and is a transition zone between continental crust and oceanic crust. The compressional wave velocities and anisotropies of typical crustal metamorphic rocks were determined at high temperature (up to 1000 ℃) and high pressure(up to 800MPa). The experimental results show that the velocities generally increase with pressure, and is unaffected by temperature up to around 550 ℃. But the velocities of all experimental samples start to drop above a temperature point. For an example, this greatly reduce the speed of wave propagation in amphibolite and serpentinite above 760 ℃ and above 550 ℃ respectively, which may be due to dehydrate of amphibole and serpentine. P-wave anisotropy coefficients of those rocks range from 2% to 10% at 800MPa and 500 ℃. The anisotropies decrease with increasing pressure at room temperature, but hardly change as function of temperature at constant 800MPa or 600MPa pressure. The average velocity of the six crustal rocks is 6.28km/s under the condition of 800MPa and 550 ℃, which is consistent with the result of deep seismic sounding data. Based on this experimental result, we deduce there may exist a lot of felsic granulites and amphibolites at the depth of 15-25km underground. With increasing temperature and pressure, the deformation behavior of the rocks undergoes from localized brittle fracture, semi-brittle deformation (cataclastic flow or semi-brittle faulting, semi-brittle flow) to homogeneous crystal-plastic flow. This transition is associated with mechanical behavior and micro-mechanism. It is very important to understanding earthquake source mechanics, the strength of the lithosphere and the style of deformation. The experiments were conducted at temperature of 600-1000 ℃, confining pressure of 500MPa, and stain rates of 10~(-4)-10~(-6) S~(-1). For fine-grained natural amphibolite, the results of experiments show that brittle faulting is major failure mode at temperature <600 ℃, but crystal-plastic deformation is dominate at temperature >800 ℃, and there is a transition with increasing temperature from sembrittle faulting to cataclastic flow and sembrittle flow at temperature of 670-750 ℃. For medium-grained natural Felsic granulite, the results of experiments show that brittle faulting is major failure mode at temperature <500 ℃, but crystal-plastic deformation is dominate at temperature >700 ℃, and there is a transition with increasing temperature from semibrittle faulting to cataclastic flow and sembrittle flow at temperature of 500-600 ℃.

Identificador

http://159.226.119.211/handle/311031/1852

http://www.irgrid.ac.cn/handle/1471x/174562

Idioma(s)

中文

Fonte

华南地壳岩石弹性和变形性质的高温高压实验研究.黄晓葛[d].中国科学院地质与地球物理研究所,2001.20-25

Palavras-Chave #地壳岩石 #弹性波速 #变形强度 #高温高压
Tipo

学位论文