Wurtzite-to-tetragonal structure phase transformation and size effect in ZnO nanorods


Autoria(s): Wang J; 肖鹏; Zhou M; Wang ZR; 柯孚久
Data(s)

2010

Resumo

The deformation of [0001]-oriented ZnO nanorods with hexagonal cross sections under uniaxial tensile loading is analyzed through molecular statistical thermodynamics (MST) simulations. The focus is on the size dependence of mechanical behavior in ZnO nanorods with diameters ranging from 1.95 to 17.5 nm. An irreversible phase transformation from the wurtzite (P6(3)mc space group) structure to a tetragonal structure (P4(2)/mnm space group) occurs during the tensile loading process. Young's modulus before the transformation demonstrates a size dependence consistent with what is observed in experiments. A stronger size dependence of response is seen after the transformation and is attributed to the polycrystalline nature of the transformed structure. A comparison of the MST and molecular dynamics (MD) methods shows that MST is 60 times faster than MD and yields results consistent with the results of MD.

National Natural Science Foundation of China (NSFC) [10772012, 10732090, 10772181, 10721202]

Chinese Academy of Sciences (CAS) [KJCX2-YW-M04]

National Basic Research Program of China [2007CB814803]

U.S. NSF [CMS9984298]

KOSEF [R31-2008-000-10083-0]

Identificador

http://dspace.imech.ac.cn/handle/311007/43539

http://www.irgrid.ac.cn/handle/1471x/124475

Idioma(s)

英语

Fonte

JOURNAL OF APPLIED PHYSICS.2010,107(2):23512

Tipo

期刊论文