854 resultados para Learning center design


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Considering the staggering benefits of high-performance schools, it seems an obvious choice to “go green.” High-performance schools offer an exceptionally cost-effective means to enhance student learning, using on average 33 percent less energy than conventionally designed schools, and provide substantial health gains, including reduced respiratory problems and absenteeism. According to the 2006 study, Greening America's Schools, Costs and Benefits, co-sponsored by the American Institute of Architects (AIA) and Capital E, a green building consulting firm, high-performance lighting is a key element of healthy learning environments, contributing to improved test scores, reduced off-task behavior, and higher achievement among students. Few argue this point more convincingly than architect Heinz Rudolf, of Portland-Oregon-based Boora Architects, who has designed sustainable schools for more than 80 school districts in Oregon, Washington, Colorado, and Wyoming, and has pioneered the high-performance school movement. Boora's recently completed project, the Baker Prairie Middle School in Canby, Oregon is one of the most sustainable K-12 facilities in the state, and illustrates Rudolf's progressive and research-intensive approach to school design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research is connected with an education development project for the four-year-long officer education program at the National Defence University. In this curriculum physics was studied in two alternative course plans namely scientific and general. Observations connected to the later one e.g. student feedback and learning outcome gave indications that action was needed to support the course. The reform work was focused on the production of aligned course related instructional material. The learning material project produced a customized textbook set for the students of the general basic physics course. The research adapts phases that are typical in Design Based Research (DBR). The research analyses the feature requirements for physics textbook aimed at a specific sector and frames supporting instructional material development, and summarizes the experiences gained in the learning material project when the selected frames have been applied. The quality of instructional material is an essential part of qualified teaching. The goal of instructional material customization is to increase the product's customer centric nature and to enhance its function as a support media for the learning process. Textbooks are still one of the core elements in physics teaching. The idea of a textbook will remain but the form and appearance may change according to the prevailing technology. The work deals with substance connected frames (demands of a physics textbook according to the PER-viewpoint, quality thinking in educational material development), frames of university pedagogy and instructional material production processes. A wide knowledge and understanding of different frames are useful in development work, if they are to be utilized to aid inspiration without limiting new reasoning and new kinds of models. Applying customization even in the frame utilization supports creative and situation aware design and diminishes the gap between theory and practice. Generally, physics teachers produce their own supplementary instructional material. Even though customization thinking is not unknown the threshold to produce an entire textbook might be high. Even though the observations here are from the general physics course at the NDU, the research gives tools also for development in other discipline related educational contexts. This research is an example of an instructional material development work together the questions it uncovers, and presents thoughts when textbook customization is rewarding. At the same time, the research aims to further creative customization thinking in instruction and development. Key words: Physics textbook, PER (Physics Education Research), Instructional quality, Customization, Creativity

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the design and implementation of a learning controller for the Automatic Generation Control (AGC) in power systems based on a reinforcement learning (RL) framework. In contrast to the recent RL scheme for AGC proposed by us, the present method permits handling of power system variables such as Area Control Error (ACE) and deviations from scheduled frequency and tie-line flows as continuous variables. (In the earlier scheme, these variables have to be quantized into finitely many levels). The optimal control law is arrived at in the RL framework by making use of Q-learning strategy. Since the state variables are continuous, we propose the use of Radial Basis Function (RBF) neural networks to compute the Q-values for a given input state. Since, in this application we cannot provide training data appropriate for the standard supervised learning framework, a reinforcement learning algorithm is employed to train the RBF network. We also employ a novel exploration strategy, based on a Learning Automata algorithm,for generating training samples during Q-learning. The proposed scheme, in addition to being simple to implement, inherits all the attractive features of an RL scheme such as model independent design, flexibility in control objective specification, robustness etc. Two implementations of the proposed approach are presented. Through simulation studies the attractiveness of this approach is demonstrated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

On introduit une nouvelle classe de schémas de renforcement des automates d'apprentissage utilisant les estimations des caractéristiques aléatoires de l'environnement. On montre que les algorithmes convergent en probabilité vers le choix optimal des actions. On présente les résultats de simulation et on suggère des applications à un environnement à plusieurs apprentissages

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the problem of Probably Ap-proximate Correct (PAC) learning of a bi-nary classifier from noisy labeled exam-ples acquired from multiple annotators(each characterized by a respective clas-sification noise rate). First, we consider the complete information scenario, where the learner knows the noise rates of all the annotators. For this scenario, we derive sample complexity bound for the Mini-mum Disagreement Algorithm (MDA) on the number of labeled examples to be ob-tained from each annotator. Next, we consider the incomplete information sce-nario, where each annotator is strategic and holds the respective noise rate as a private information. For this scenario, we design a cost optimal procurement auc-tion mechanism along the lines of Myer-son’s optimal auction design framework in a non-trivial manner. This mechanism satisfies incentive compatibility property,thereby facilitating the learner to elicit true noise rates of all the annotators.