978 resultados para Its dna barcodes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

RecJ exonuclease plays crucial roles in several DNA repair and recombination pathways, and its ubiquity in bacterial species points to its ancient origin and vital cellular function. RecJ exonuclease from Haemophilus influenzae is a 575-amino-acid protein that harbors the characteristic motifs conserved among RecJ homologs. The purified protein exhibits a process 5'-3' single-stranded-DNA-specific exonuclease activity. The exonuclease activity of H. influenzae RecJ (HiRecJ) was supported by Mg2+ or Mn2+ and inhibited by Cd2+ suggesting a different mode of metal binding in HiRecJ as compared to Escherichia coli RecJ (EcoRecJ). Site-directed mutagenesis of highly conserved residues in HiRecJ abolished enzymatic activity. Interestingly, substitution of alanine for aspartate 77 resulted in a catalytically inactive enzyme that bound to DNA with a significantly higher affinity as compared to the wild-type enzyme. Noticeably, steady-state kinetic studies showed that H. influenzae single-stranded DNA-binding protein (HiSSB) increased the affinity of HiRecJ for single-stranded DNA and stimulated its exonuclease activity. HiSSB, whose C-terminal tail had been deleted, failed to enhance RecJ exonuclease activity. More importantly, HiRecJ was found to directly associate with its cognate single-stranded DNA-binding protein (SSB), as demonstrated by various in vitro assays, Interaction studies carried out with the truncated variants of HiRecJ and HiSSB revealed that the two proteins interact via the C-terminus of SSB protein and the core-catalytic domain of RecJ. Taken together, these results emphasize direct interactio between RecJ and SSB, which confers functional cooperativity to these two proteins. In addition, these results implicate SSB as being involved in the recruitment of RecJ to DNA and provide insights into the interplay between these proteins in repair and recombination pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At low temperature (below its freezing/melting temperature), liquid water under confinement is known to exhibit anomalous dynamical features. Here we study structure and dynamics of water in the grooves of a long DNA duplex using molecular dynamics simulations with TIP5P potential at low temperature. We find signatures of a dynamical transition in both translational and orientational dynamics of water molecules in both the major and the minor grooves of a DNA duplex. The transition occurs at a slightly higher temperature (TGL ≈ 255 K) than the temperature at which the bulk water is found to undergo a dynamical transition, which for the TIP5P potential is at 247 K. Groove water, however, exhibits markedly different temperature dependence of its properties from the bulk. Entropy calculations reveal that the minor groove water is ordered even at room temperature, and the transition at T ≈ 255 K can be characterized as a strong-to-strong dynamical transition. Confinement of water in the grooves of DNA favors the formation of a low density four-coordinated state (as a consequence of enthalpy−entropy balance) that makes the liquid−liquid transition stronger. The low temperature water is characterized by pronounced tetrahedral order, as manifested in the sharp rise near 109° in the O−O−O angle distribution. We find that the Adams−Gibbs relation between configurational entropy and translational diffusion holds quite well when the two quantities are plotted together in a master plot for different region of aqueous DNA duplex (bulk, major, and minor grooves) at different temperatures. The activation energy for the transfer of water molecules between different regions of DNA is found to be weakly dependent on temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of studies in yeast have shown that DNA topoisomerase TI is essential for chromosome condensation and disjunction during mitosis at the metaphase/anaphase transition and meiosis I. Accordingly, kinetic and mechanistic studies have implied a role for topoisomerase rr in chromosome disjunction. As a step toward understanding the nature and role of topoisomerase II in a mammalian germline in vivo, we have purified topoisomerase II from rat testis to homogeneity and ascertained several of its catalytic activities in conjunction with that of the purified enzyme from liver. The purified enzymes appeared to be monomers under denaturing conditions; however, they differed in their relative molecular mass. Topoisomerase II from testis and liver have apparent molecular masses of 150 +/- 10 kDa and 160 +/- 10 kDa, respectively. The native molecular mass of testis topoisomerase II as assayed by immunoblot analysis of cell-foe extracts, prepared in the presence of SDS and a number of protease inhibitors, corroborated with the size of the purified enzyme. Both enzymes are able to promote decatenation and relax supercoiled DNA substrates in an ATP and Mg2+-dependent manner. However, quantitative comparison of catalytic properties of topoisomerase II from testis with that of the enzyme from liver displayed significant differences in their efficiencies. Optimal pH values for testis enzyme are 6.5 to 8.5 while they are 6 to 7.5 for the liver enzyme. Intriguingly, the relaxation activity of liver topoisomerase II was inhibited by potassium glutamate at 1 M, whereas testis enzyme required about half its concentration. These findings argue that topoisomerase II from rat testis is structurally distinct from that of its somatic form and the functional differences between the two enzymes parallels with the physiological environment that is unique to these two tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conformational flexibility inherent in the polynucleotide chain plays an important role in deciding its three-dimensonal structure and enables it to undergo structural transitions in order to fulfil all its functions. Following certain stereochemical guidelines, both right and left handed double-helical models have been built in our laboratory and they are in reasonably good agreement with the fibre patterns for various polymorphous forms of DNA. Recently, nuclear magnetic resonance spectroscopy has become an important technique for studying the solution conformation and polymorphism of nucleic acids. Several workers have used 1H nuclear magnetic resonance nuclear Overhauser enhancement measurements to estimate the interproton distances for the various DNA oligomers and compared them with the interproton distances for particular models of A and Β form DNA. In some cases the solution conformation does not seem to fit either of these models. We have been studying various models for DNA with a view to exploring the full conformational space allowed for nucleic acid polymers. In this paper, the interproton distances calculated for the different stereochemically feasible models of DNA are presented and they are compared and correlated against those obtained from 1Η nuclear magnetic resonance nuclear Overhauser enhancement measurements of various nucleic acid oligomers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An A-DNA type double helical conformation was observed in the single crystal X-ray structure of the octamer d(G-G-T-A-T-A-C-C), 1, and its 5-bromouracil-containing analogue, 2. The structure of the isomorphous crystals (space group P61) was solved by a search technique based on packing criteria and R-factor calculations, with use of only low order data. At the present stage of refinement the R factors are 31 % for 1 and 28 % for 2 at a resolution of 2.25 A (0.225 nm). The molecules interact through their minor grooves by hydrogen bonding and base to sugar van der Waals contacts. The stable A conformation observed in the crystal may have some structural relevance to promoter regions where the T-A-T-A sequence is frequently found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gossypol, a polyphenolic compound isolated from cotton plant was found to degrade pBR322 DNA Image in a reaction which required the presence of a metal ion, a reducing agent (2-mercaptoethanol) and oxygen as revealed after agarose gel electrophoresis. Fe3+ and Co2+ showed maximum degradation whereas addition of Ca2+ and Mg2+ prevented the gossypol mediated DNA damage. Gossypol caused degradation of rat liver DNA incubated Image even in the absence of added metal ions and 2-mercaptoethanol. Incubation of intact rat liver nuclei with gossypol reveled DNA degradation and nuclei isolated from rats treated with gossypol Image showed higher succestibility to DNA fragmentation when incubated with gossypol Image than control nuclei. EcoRl and AIuI digestion of DNA isolated from gossypol treated rats gave clear cut evidence for DNA degradation. These observations indicate that gossypol is genotoxic and considereable care has to be exercised in its use. SDS, sodium dodecayl sulphate; TE buffer, Tris-HCL-EDTA buffer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Botryosphaeria rhodina (anamorph Lasiodiplodia theobromae) is a common endophyte and opportunistic pathogen on more than 500 tree species in the tropics and subtropics. During routine disease surveys of plantations in Australia and Venezuela several isolates differing from L. theobromae were identified and subsequently characterized based upon morphology and ITS and EF1-a nucleotide sequences. These isolates grouped into three strongly supported clades related to but different from the known taxa, B. rhodina and L. gonubiensis, These have been described here as three new species L. venezuelensis sp. nov., L. crassispora sp. nov. and L. rubropurpurea sp. nov. The three could be distinguished easily from each other and the two described species of Lasiodiplodia, thus confirming phylogenetic separations. Furthermore all five Lasiodiplodia spp. now recognized separated from Diplodia spp. and Dothiorella spp. with 100% bootstrap support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Degradation of RNA in diagnostic specimens can cause false-negative test results and potential misdiagnosis when tests rely on the detection of specific RNA sequence. Current molecular methods of checking RNA integrity tend to be host species or group specific, necessitating libraries of primers and reaction conditions. The objective here was to develop a universal (multi-species) quality assurance tool for determining the integrity of RNA in animal tissues submitted to a laboratory for analyses. Ribosomal RNA (16S rRNA) transcribed from the mitochondrial 16S rDNA was used as template material for reverse transcription to cDNA and was amplified using polymerase chain reaction (PCR). As mitochondrial DNA has a high level of conservation, the primers used were shown to reverse transcribe and amplify RNA from every animal species tested. Deliberate degradation of rRNA template through temperature abuse of samples resulted in no reverse transcription and amplification. Samples spiked with viruses showed that single-stranded viral RNA and rRNA in the same sample degraded at similar rates, hence reverse transcription and PCR amplification of 16S rRNA could be used as a test of sample integrity and suitability for analysis that required the sample's RNA, including viral RNA. This test will be an invaluable quality assurance tool for determination of RNA integrity from tissue samples, thus avoiding erroneous test results that might occur if degraded target RNA is used unknowingly as template material for reverse transcription and subsequent PCR amplification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important question of biological relevance is the polymorphism of the double-helical DNA structure in its free form, and the changes that it undergoes upon protein-binding. We have analysed a database of free DNA crystal structures to assess the inherent variability of the free DNA structure and have compared it with a database of protein-bound DNA crystal structures to ascertain the protein-induced variations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic variation among 29 isolates of Fusarium oxysporum f.sp. zingiberi (Foz) collected from diseased ginger rhizome in production regions throughout Queensland was analysed using DNA amplification fingerprinting (DAF). Eight isolates of other Fusarium species and/or formae speciales were included for comparative analysis. Within the Foz isolates, three haplotypes were identified based on 17 polymorphic bands generated with five primers. Two groups showed very little genetic variation (98.6% similarity), whereas the third single isolate was quite distinct in terms of its molecular profile (77.2% similarity). Genetic similarity among the Fusarium solani, F. oxysporum f.sp. lycopersici and F. oxysporum f.sp. cubense races 1, 3 and 4 isolates compared well with the published literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structures of the synthetic self-complementary octamer d(G-G-T-A-T-A-C-C) and its 5-bromouracil-containing analogue have been refined to R values of 20% and 14% at resolutions of 1·8 and 2·25 Å, respectively. The molecules adopt an A-DNA type double-helical conformation, which is minimally affected by crystal forces. A detailed analysis of the structure shows a considerable influence of the nucleotide sequence on the base-pair stacking patterns. In particular, the electrostatic stacking interactions between adjacent guanine and thymine bases produce symmetric bending of the double helix and a major-groove widening. The sugar-phosphate backbone appears to be only slightly affected by the base sequence. The local variations in the base-pair orientation are brought about by correlated adjustments in the backbone torsion angles and the glycosidic orientation. Sequence-dependent conformational variations of the type observed here may contribute to the specificity of certain protein-DNA interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gemini viral assembly and transport of viral DNA into nucleus for replication, ssentially involve DNA-coat protein interactions. The kinetics of interaction of Cotton LeafCtirl Kokhran Virus-Dabawali recombinant coat protein (rCP) with DNA was studied by electrophoretic mobility shift assay (EMSA) and Surface plasmon resonance (SPR). The rCP interacted with ssDNA with a K-A, of 2.6 +/- 0.29 x 10(8) M-1 in a sequence non-specific manner. The CP has a conserved C2H2 type zinc finger motif composed of residues C68, C72, H81 and H85. Mutation of these residues to alanine resulted in reduced binding to DNA probes. The H85A mutant rCP showed the least binding with approximately 756 fold loss in the association rate and a three order magnitude decrease in the binding affinity as compared to rCP. The CP-DNA interactions via the zinc finger motif could play a Crucial role ill Virus assembly and in nuclear transport. (C) 2009 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hendersonia osteospermi was found for the first time in Australia on leaf spots of the introduced invasive plant Chrysanthemoides monilifera ssp. rotundata (bitou bush) in coastal regions of New South Wales. Pathogenicity tests on species from 11 tribes in the family Asteraceae, demonstrated that H. osteospermi caused severe necrosis on leaves and stems of C. monilifera ssp. rotundata and its congener C. monilifera ssp. monilifera (boneseed). Small necrotic spots also developed on Osteospermum fruticosum and Dimorphotheca cuneata in the Calenduleae and on Helianthus annuus (sunflower) in the Heliantheae. None of the other plant species tested developed leaf spots, although H. osteospermi was re-isolated from senescent leaves of Cynara scolymus (globe artichoke) in the Cynareae and Vernonia cinerea in the Vernonieae. Single ascospores from ascomata of a Pleospora-like fungus found on diseased stems of bitou bush produced H. osteospermi in culture, which proved the anamorph/teleomorph connection. The ITS region of both a single-ascospore isolate and a single-conidium isolate were sequenced and found to be identical. The taxonomic status of H. osteospermi is re-examined and Austropleospora osteospermi gen. et sp. nov. is described as its teleomorph based on morphology, host range tests and DNA sequence analysis. The potential of A. osteospermi for the biological control of bitou bush and boneseed in Australia is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA evidence has made a significant contribution to criminal investigations in Australia and around the world since it was widely adopted in the 1990s (Gans & Urbas 2002). The direct matching of DNA profiles, such as comparing one obtained from a crime scene with one obtained from a suspect or database, remains a widely used technique in criminal investigations. A range of new DNA profiling techniques continues to be developed and applied in criminal investigations around the world (Smith & Urbas 2012). This paper is the third in a series by the Australian Institute of Criminology (AIC) on DNA evidence. The first, published in 1990 when the technology was in its relative infancy, outlined the scientific background for DNA evidence, considered early issues such as scientific reliability and privacy and described its application in early criminal cases (Easteal & Easteal 1990). The second, published in 2002, expanded on the scientific background and discussed a significant number of Australian cases in a 12-year period, illustrating issues that had arisen in investigations, at trial and in the use of DNA in the review of convictions and acquittals (Gans & Urbas 2002). There have been some significant developments in the science and technology behind DNA evidence in the 13 years since 2002 that have important implications for law enforcement and the legal system. These are discussed through a review of relevant legal cases and the latest empirical evidence. This paper is structured in three sections. The first examines the scientific techniques and how they have been applied in police investigations, drawing on a number of recent cases to illustrate them. The second considers empirical research evaluating DNA evidence and databases and the impact DNA has on investigative and court outcomes. The final section discusses significant cases that establish legal precedent relating to DNA evidence in criminal trials where significant issues have arisen or new techniques have been applied that have not yet been widely discussed in the literature. The paper concludes by reflecting on implications for policy and practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anti-(5-methylcytosine) antibodies were immobilized on glutaraldehyde-activated Indion 48-R, a polystyrene resin with amino groups. Immobilized antibody was very stable and could be used several times without any apparent change in the initial binding capacity of the antibody-matrix. Fractions of total DNA from various animal and plant sources were retained on this column and could be eluted quantitatively with 1.0 m NaCl. The bound fraction was further characterized for its 5-methylcytosine content by restriction enzyme digestion patterns.