936 resultados para Isabella II, Queen of Spain, 1830-1904.
Resumo:
Copper(II) complexes of two biologically important ligands, viz., embelin (2,5-dihydroxy-3-undecyl-2,5-cyclohexadien 1,4-dione) and 2-aminobenzimidazole were entrapped in the cages of zeolite Y by the flexible ligand method. The capability of these compounds in catalyzing the reduction of oxygen (industrially known as deoxo reaction) was explored and the results indicate an enhancement of the catalytic properties from that of the simple copper ion exchanged zeolite. These point to the ability of the ligands in enhancing the oxygen binding capability of the metal ion. Elemental analyses, Fourier transform infrared (FTIR), diffuse reflectance and EPR spectral studies, magnetic susceptibility measurements, TG, surface area analyses and powder X-ray diffraction studies were used in understanding the presence, composition and structure of the complexes inside the cages. The study also reveals the increased thermal and mechanical stability of the complexes as a result of encapsulation.
Resumo:
Two novel polystyrene-supported Schiff bases, PSOPD and PSHQAD, were synthesized. A polymerbound aldehyde was condensed with o-phenylenediamine to prepare the Schiff base PSOPD, and a polymer-bound amine was condensed with 3-hydroxyquinoxaline-2-carboxaldehyde to prepare the Schiff base PSHQAD. This article addresses the study of cobalt (II), nickel (II), and copper (II) complexes of these polymer-bound Schiff bases. All the complexes were characterized, and the probable geometry was suggested using elemental analysis, diffuse reflectance ultraviolet, Fourier transform infrared spectroscopy, thermal studies, surface area studies, and magnetic measurements.
Resumo:
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.
Resumo:
Three copper(II) complexes of salicylaldehyde N(4)-phenyl thiosemicarbazone (H2L1) and two copper(II) complexes of N(4)-cyclohexyl thiosemicarbazone (H2L2) have been synthesized and characterized by different physicochemical techniques like magnetic studies and electronic, infrared and EPR spectral studies. The complexes View the MathML source and [(CuL2)2] (4) having dimeric structure. The thiosemicarbazones bind to the metal as dianionic ONS donor ligand in all the complexes, except in the complex [Cu(HL1)2] · H2O (2). In complex 2, the ligand moieties are coordinated as monoanionic (HL−) ones. Two of the complexes [CuL1dmbipy] · H2O (3) and [CuL2dmbipy] (5) have been found to possess the stoichiometry [CuLB], where B = 4,4′-dimethyl-2,2′-bipyridine (dmbipy). The coordination geometry around copper(II) in 5 is trigonal bipyramidal distorted square based pyramidal (TBDSBP), as obtained by X-ray diffraction studies.
Resumo:
Five Mn(II) complexes of bis(thiosemicarbazones) which are represented as [Mn(H2Ac4Ph)Cl2] (1), [Mn(Ac4Ph)H2O] (2), [Mn(H2Ac4Cy)Cl2]·H2O (3), [Mn(H2Ac4Et)Cl2]·3H2O (4) and [Mn(H2Ac4Et)(OAc)2]·3H2O (5) have been synthesized and characterized by elemental analyses, electronic, infrared and EPR spectral techniques. In all the complexes except [Mn(Ac4Ph)H2O], the ligands act as pentadentate neutral molecules and coordinate to Mn(II) ion through two thione sulfur atoms, two azomethine nitrogens and the pyridine nitrogen, suggesting a heptacoordination. While in compound [Mn(Ac4Ph)H2O], the dianionic ligand is coordinated to the metal suggesting six coordination in this case. Magnetic studies indicate the high spin state of Mn(II). Conductivity measurements reveal their non-electrolyte nature. EPR studies indicate five g values for [Mn(Ac4Ph)H2O] showing zero field splitting.
Resumo:
A novel binuclear Ni(II) complex of salicylaldehyde 3-azacyclothiosemicarbazone (H2L) has been synthesized and characterized by elemental analysis, IR and UV–Vis spectroscopy. The single crystal X-ray structure of the complex shows that bridging occurs through thiolato sulfur and phenolic oxygen atoms. Nickel centers in the complex have square planar and octahedral geometries
Resumo:
Ten new copper(II) complexes of five potential bisthiocarbohydrazone and biscarbohydrazone ligands were synthesized and physico-chemically characterized. The spectral and magnetic studies of compounds are consistent with the formation of asymmetric di-, tri- or tetranuclear copper(II) complexes of deprotonated forms of respective ligands. The variable temperature magnetic susceptibility measurements of all complexes showantiferromagnetic interactions between the Cu(II) centers, in agreement with very broad powder EPR spectra. However, frozen solution EPR spectral studies are found in contradiction with the solid-state magnetic studies and indicate that the complexes are not very stable in solutions; the possible fragmentations of complexes are found in agreement with MALDI MS results. The EPR spectral simulation of most of the compounds is in agreement with the presence of two uncoupled Cu(II) species in solution.
Resumo:
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2] H2O (1), [CuLNCS] ½H2O (2), [CuLNO3] ½H2O (3), [Cu(HL)Cl2] H2O (4), [Cu2(HL)2(SO4)2] 4H2O (5), [CuLClO4] ½H2O (6), [CuLBr] 2H2O (7), [CuL2] H2O (8) and [CuLN3] CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2 y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure
Resumo:
Mn(II) complexes derived from a set of acylhydrazones were synthesised and characterized by elemental analyzes, IR, UV–vis and X-band EPR spectral studies as well as conductivity and magnetic susceptibility measurements. In the reported complexes, the hydrazones exist either in the keto or enolate form, as evidenced by IR spectral data. Crystal structures of two complexes are well established using single crystal X-ray diffraction studies. In both of these complexes two equivalent monoanionic ligands are coordinated in a meridional fashion using cis pyridyl, trans azomethine nitrogen and cis enolate oxygen atoms positioned very nearly perpendicular to each other. EPR spectra in DMF solutions at 77 K show hyperfine sextets and in some of the complexes the low intensity forbidden lines lying between each of the two hyperfine lines are also observed
Resumo:
Four manganese(II) complexes Mn2(paa)2(N3)4 (1), [Mn(paa)2(NCS)2] 3/2H2O (2), Mn(papea)2(NCS)2 (3), [Mn(dpka)2(NCS)2] 1/2H2O(4) of three neutral N,N donor bidentate Schiff bases were synthesized and physico- chemically characterized by means of partial elemental analyses, electronic, infrared and EPR spectral studies. Compounds 3 and 4 were obtained as single crystals suitable for X-ray diffraction. Compound 4 recrystallized as Mn(dpka)2(NCS)2. Both the compounds crystallized in the monoclinic space groups P21 for 3 and C2/c for 4. Manganese(II) is found to be in a distorted octahedral geometry in both the monomeric complexes with thiocyanate anion as a terminal ligand coordinating through the nitrogen atom. EPR spectra in DMF solutions at 77 K show hyperfine sextets with low intensity forbidden lines lying between each of the two main hyperfine lines and the zero field splitting parameters (D and E) were calculated.
Resumo:
Resumen tomado de la publicaci??n