975 resultados para Fuzzy modeling
Resumo:
Two-party key exchange (2PKE) protocols have been rigorously analyzed under various models considering different adversarial actions. However, the analysis of group key exchange (GKE) protocols has not been as extensive as that of 2PKE protocols. Particularly, an important security attribute called key compromise impersonation (KCI) resilience has been completely ignored for the case of GKE protocols. Informally, a protocol is said to provide KCI resilience if the compromise of the long-term secret key of a protocol participant A does not allow the adversary to impersonate an honest participant B to A. In this paper, we argue that KCI resilience for GKE protocols is at least as important as it is for 2PKE protocols. Our first contribution is revised definitions of security for GKE protocols considering KCI attacks by both outsider and insider adversaries. We also give a new proof of security for an existing two-round GKE protocol under the revised security definitions assuming random oracles. We then show how to achieve insider KCIR in a generic way using a known compiler in the literature. As one may expect, this additional security assurance comes at the cost of an extra round of communication. Finally, we show that a few existing protocols are not secure against outsider KCI attacks. The attacks on these protocols illustrate the necessity of considering KCI resilience for GKE protocols.
Resumo:
Current complication rates for adolescent spinal deformity surgery are unacceptably high and in order to improve patient outcomes, the development of a simulation tool which enables the surgical strategy for an individual patient to be optimized is necessary. In this chapter we will present our work to date in developing and validating patient-specific modeling techniques to simulate and predict patient outcomes for surgery to correct adolescent scoliosis deformity. While these simulation tools are currently being developed to simulate adolescent idiopathic scoliosis patients, they will have broader applications in simulating spinal disorders and optimizing surgical planning for other types of spine surgery. Our studies to date have highlighted the need for not only patient-specific anatomical data, but also patient-specific tissue parameters and biomechanical loading data, in order to accurately predict the physiological behaviour of the spine. Even so, patient-specific computational models are the state-of-the art in computational biomechanics and offer much potential as a pre-operative surgical planning tool.
Resumo:
Bioinformatics involves analyses of biological data such as DNA sequences, microarrays and protein-protein interaction (PPI) networks. Its two main objectives are the identification of genes or proteins and the prediction of their functions. Biological data often contain uncertain and imprecise information. Fuzzy theory provides useful tools to deal with this type of information, hence has played an important role in analyses of biological data. In this thesis, we aim to develop some new fuzzy techniques and apply them on DNA microarrays and PPI networks. We will focus on three problems: (1) clustering of microarrays; (2) identification of disease-associated genes in microarrays; and (3) identification of protein complexes in PPI networks. The first part of the thesis aims to detect, by the fuzzy C-means (FCM) method, clustering structures in DNA microarrays corrupted by noise. Because of the presence of noise, some clustering structures found in random data may not have any biological significance. In this part, we propose to combine the FCM with the empirical mode decomposition (EMD) for clustering microarray data. The purpose of EMD is to reduce, preferably to remove, the effect of noise, resulting in what is known as denoised data. We call this method the fuzzy C-means method with empirical mode decomposition (FCM-EMD). We applied this method on yeast and serum microarrays, and the silhouette values are used for assessment of the quality of clustering. The results indicate that the clustering structures of denoised data are more reasonable, implying that genes have tighter association with their clusters. Furthermore we found that the estimation of the fuzzy parameter m, which is a difficult step, can be avoided to some extent by analysing denoised microarray data. The second part aims to identify disease-associated genes from DNA microarray data which are generated under different conditions, e.g., patients and normal people. We developed a type-2 fuzzy membership (FM) function for identification of diseaseassociated genes. This approach is applied to diabetes and lung cancer data, and a comparison with the original FM test was carried out. Among the ten best-ranked genes of diabetes identified by the type-2 FM test, seven genes have been confirmed as diabetes-associated genes according to gene description information in Gene Bank and the published literature. An additional gene is further identified. Among the ten best-ranked genes identified in lung cancer data, seven are confirmed that they are associated with lung cancer or its treatment. The type-2 FM-d values are significantly different, which makes the identifications more convincing than the original FM test. The third part of the thesis aims to identify protein complexes in large interaction networks. Identification of protein complexes is crucial to understand the principles of cellular organisation and to predict protein functions. In this part, we proposed a novel method which combines the fuzzy clustering method and interaction probability to identify the overlapping and non-overlapping community structures in PPI networks, then to detect protein complexes in these sub-networks. Our method is based on both the fuzzy relation model and the graph model. We applied the method on several PPI networks and compared with a popular protein complex identification method, the clique percolation method. For the same data, we detected more protein complexes. We also applied our method on two social networks. The results showed our method works well for detecting sub-networks and give a reasonable understanding of these communities.
Resumo:
At the beginning of the pandemic (H1N1) 2009 outbreak, we estimated the potential surge in demand for hospital-based services in 4 Health Service Districts of Queensland, Australia, using the FluSurge model. Modifications to the model were made on the basis of emergent evidence and results provided to local hospitals to inform resource planning for the forthcoming pandemic. To evaluate the fit of the model, a comparison between the model's predictions and actual hospitalizations was made. In early 2010, a Web-based survey was undertaken to evaluate the model's usefulness. Predictions based on modified assumptions arising from the new pandemic gained better fit than results from the default model. The survey identified that the modeling support was helpful and useful to service planning for local hospitals. Our research illustrates an integrated framework involving post hoc comparison and evaluation for implementing epidemiologic modeling in response to a public health emergency.
Resumo:
Quantum theory has recently been employed to further advance the theory of information retrieval (IR). A challenging research topic is to investigate the so called quantum-like interference in users’ relevance judgement process, where users are involved to judge the relevance degree of each document with respect to a given query. In this process, users’ relevance judgement for the current document is often interfered by the judgement for previous documents, due to the interference on users’ cognitive status. Research from cognitive science has demonstrated some initial evidence of quantum-like cognitive interference in human decision making, which underpins the user’s relevance judgement process. This motivates us to model such cognitive interference in the relevance judgement process, which in our belief will lead to a better modeling and explanation of user behaviors in relevance judgement process for IR and eventually lead to more user-centric IR models. In this paper, we propose to use probabilistic automaton(PA) and quantum finite automaton (QFA), which are suitable to represent the transition of user judgement states, to dynamically model the cognitive interference when the user is judging a list of documents.
Resumo:
The design of artificial intelligence in computer games is an important component of a player's game play experience. As games are becoming more life-like and interactive, the need for more realistic game AI will increase. This is particularly the case with respect to AI that simulates how human players act, behave and make decisions. The purpose of this research is to establish a model of player-like behavior that may be effectively used to inform the design of artificial intelligence to more accurately mimic a player's decision making process. The research uses a qualitative analysis of player opinions and reactions while playing a first person shooter video game, with recordings of their in game actions, speech and facial characteristics. The initial studies provide player data that has been used to design a model of how a player behaves.
Resumo:
Many academic researchers have conducted studies on the selection of design-build (DB) delivery method; however, there are few studies on the selection of DB operational variations, which poses challenges to many clients. The selection of DB operational variation is a multi-criteria decision making process that requires clients to objectively evaluate the performance of each DB operational variation with reference to the selection criteria. This evaluation process is often characterized by subjectivity and uncertainty. In order to resolve this deficiency, the current investigation aimed to establish a fuzzy multicriteria decision-making (FMCDM) model for selecting the most suitable DB operational variation. A three-round Delphi questionnaire survey was conducted to identify the selection criteria and their relative importance. A fuzzy set theory approach, namely the modified horizontal approach with the bisector error method, was applied to establish the fuzzy membership functions, which enables clients to perform quantitative calculations on the performance of each DB operational variation. The FMCDM was developed using the weighted mean method to aggregate the overall performance of DB operational variations with regard to the selection criteria. The proposed FMCDM model enables clients to perform quantitative calculations in a fuzzy decision-making environment and provides a useful tool to cope with different project attributes.
Resumo:
Recent studies have started to explore context-awareness as a driver in the design of adaptable business processes. The emerging challenge of identifying and considering contextual drivers in the environment of a business process are well understood, however, typical methods used in business process modeling do not yet consider this additional contextual information in their process designs. In this chapter, we describe our research towards innovative and advanced process modeling methods that include mechanisms to incorporate relevant contextual drivers and their impacts on business processes in process design models. We report on our ongoing work with an Australian insurance provider and describe the design science we employed to develop these innovative and useful artifacts as part of a context-aware method framework. We discuss the utility of these artifacts in an application in the claims handling process at the case organization.
Resumo:
Virtual prototyping emerges as a new technology to replace existing physical prototypes for product evaluation, which are costly and time consuming to manufacture. Virtualization technology allows engineers and ergonomists to perform virtual builds and different ergonomic analyses on a product. Digital Human Modelling (DHM) software packages such as Siemens Jack, often integrate with CAD systems to provide a virtual environment which allows investigation of operator and product compatibility. Although the integration between DHM and CAD systems allows for the ergonomic analysis of anthropometric design, human musculoskeletal, multi-body modelling software packages such as the AnyBody Modelling System (AMS) are required to support physiologic design. They provide muscular force analysis, estimate human musculoskeletal strain and help address human comfort assessment. However, the independent characteristics of the modelling systems Jack and AMS constrain engineers and ergonomists in conducting a complete ergonomic analysis. AMS is a stand alone programming system without a capability to integrate into CAD environments. Jack is providing CAD integrated human-in-the-loop capability, but without considering musculoskeletal activity. Consequently, engineers and ergonomists need to perform many redundant tasks during product and process design. Besides, the existing biomechanical model in AMS uses a simplified estimation of body proportions, based on a segment mass ratio derived scaling approach. This is insufficient to represent user populations anthropometrically correct in AMS. In addition, sub-models are derived from different sources of morphologic data and are therefore anthropometrically inconsistent. Therefore, an interface between the biomechanical AMS and the virtual human model Jack was developed to integrate a musculoskeletal simulation with Jack posture modeling. This interface provides direct data exchange between the two man-models, based on a consistent data structure and common body model. The study assesses kinematic and biomechanical model characteristics of Jack and AMS, and defines an appropriate biomechanical model. The information content for interfacing the two systems is defined and a protocol is identified. The interface program is developed and implemented through Tcl and Jack-script(Python), and interacts with the AMS console application to operate AMS procedures.
Resumo:
In the era of Web 2.0, huge volumes of consumer reviews are posted to the Internet every day. Manual approaches to detecting and analyzing fake reviews (i.e., spam) are not practical due to the problem of information overload. However, the design and development of automated methods of detecting fake reviews is a challenging research problem. The main reason is that fake reviews are specifically composed to mislead readers, so they may appear the same as legitimate reviews (i.e., ham). As a result, discriminatory features that would enable individual reviews to be classified as spam or ham may not be available. Guided by the design science research methodology, the main contribution of this study is the design and instantiation of novel computational models for detecting fake reviews. In particular, a novel text mining model is developed and integrated into a semantic language model for the detection of untruthful reviews. The models are then evaluated based on a real-world dataset collected from amazon.com. The results of our experiments confirm that the proposed models outperform other well-known baseline models in detecting fake reviews. To the best of our knowledge, the work discussed in this article represents the first successful attempt to apply text mining methods and semantic language models to the detection of fake consumer reviews. A managerial implication of our research is that firms can apply our design artifacts to monitor online consumer reviews to develop effective marketing or product design strategies based on genuine consumer feedback posted to the Internet.
Resumo:
Background: Access to cardiac services is essential for appropriate implementation of evidence-based therapies to improve outcomes. The Cardiac Accessibility and Remoteness Index for Australia (Cardiac ARIA) aimed to derive an objective, geographic measure reflecting access to cardiac services. Methods: An expert panel defined an evidence-based clinical pathway. Using Geographic Information Systems (GIS), a numeric/alpha index was developed at two points along the continuum of care. The acute category (numeric) measured the time from the emergency call to arrival at an appropriate medical facility via road ambulance. The aftercare category (alpha) measured access to four basic services (family doctor, pharmacy, cardiac rehabilitation, and pathology services) when a patient returned to their community. Results: The numeric index ranged from 1 (access to principle referral center with cardiac catheterization service ≤ 1 hour) to 8 (no ambulance service, > 3 hours to medical facility, air transport required). The alphabetic index ranged from A (all 4 services available within 1 hour drive-time) to E (no services available within 1 hour). 13.9 million (71%) Australians resided within Cardiac ARIA 1A locations (hospital with cardiac catheterization laboratory and all aftercare within 1 hour). Those outside Cardiac 1A were over-represented by people aged over 65 years (32%) and Indigenous people (60%). Conclusion: The Cardiac ARIA index demonstrated substantial inequity in access to cardiac services in Australia. This methodology can be used to inform cardiology health service planning and the methodology could be applied to other common disease states within other regions of the world.
Resumo:
A distributed fuzzy system is a real-time fuzzy system in which the input, output and computation may be located on different networked computing nodes. The ability for a distributed software application, such as a distributed fuzzy system, to adapt to changes in the computing network at runtime can provide real-time performance improvement and fault-tolerance. This paper introduces an Adaptable Mobile Component Framework (AMCF) that provides a distributed dataflow-based platform with a fine-grained level of runtime reconfigurability. The execution location of small fragments (possibly as little as few machine-code instructions) of an AMCF application can be moved between different computing nodes at runtime. A case study is included that demonstrates the applicability of the AMCF to a distributed fuzzy system scenario involving multiple physical agents (such as autonomous robots). Using the AMCF, fuzzy systems can now be developed such that they can be distributed automatically across multiple computing nodes and are adaptable to runtime changes in the networked computing environment. This provides the opportunity to improve the performance of fuzzy systems deployed in scenarios where the computing environment is resource-constrained and volatile, such as multiple autonomous robots, smart environments and sensor networks.
Resumo:
The work presented in this poster outlines the steps taken to model a 4 mm conical collimator (BrainLab, Germany) on a Novalis Tx linear accelerator (Varian, Palo Alto, USA) capable of producing a 6MV photon beam for treatment of Stereotactic Radiosurgery (SRS) patients. The verification of this model was performed by measurements in liquid water and in virtual water. The measurements involved scanning depth dose and profiles in a water tank plus measurement of output factors in virtual water using Gafchromic® EBT3 film.
Resumo:
An increase in the likelihood of navigational collisions in port waters has put focus on the collision avoidance process in port traffic safety. The most widely used on-board collision avoidance system is the automatic radar plotting aid which is a passive warning system that triggers an alert based on the pilot’s pre-defined indicators of distance and time proximities at the closest point of approaches in encounters with nearby vessels. To better help pilot in decision making in close quarter situations, collision risk should be considered as a continuous monotonic function of the proximities and risk perception should be considered probabilistically. This paper derives an ordered probit regression model to study perceived collision risks. To illustrate the procedure, the risks perceived by Singapore port pilots were obtained to calibrate the regression model. The results demonstrate that a framework based on the probabilistic risk assessment model can be used to give a better understanding of collision risk and to define a more appropriate level of evasive actions.
Resumo:
Navigational collisions are one of the major safety concerns in many seaports. Despite the extent of recent works done on port navigational safety research, little is known about harbor pilot’s perception of collision risks in port fairways. This paper uses a hierarchical ordered probit model to investigate associations between perceived risks and the geometric and traffic characteristics of fairways and the pilot attributes. Perceived risk data, collected through a risk perception survey conducted among the Singapore port pilots, are used to calibrate the model. Intra-class correlation coefficient justifies use of the hierarchical model in comparison with an ordinary model. Results show higher perceived risks in fairways attached to anchorages, and in those featuring sharper bends and higher traffic operating speeds. Lesser risks are perceived in fairways attached to shoreline and confined waters, and in those with one-way traffic, traffic separation scheme, cardinal marks and isolated danger marks. Risk is also found to be perceived higher in night.