1000 resultados para ENCASED BEAM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage mechanism of a cracked material due to laser beam thermal shock is an important problem when the interactions of high power laser beam with materials are studied. The transient thermal stress intensity factors (TSIFs) for a center crack in an infinite plate subjected to laser beam thermal shock are investigated. When the crack is in the heat affected zone, the compressive thermal stress causes the crack surface to come into contact with each other over a certain contact length, but the high tensile stresses around the crack tip tend to open the crack. In this case, the problem may be treated as a pair of embedded cracks problem with a smooth closure condition of the center crack. The TSIFs and the crack contact lengths are calculated with different laser beam spatial shapes. The TSIFs induced by thermal shock are in marked different from those induced by general mechanical loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lattice-type model can simulate in a straightforward manner heterogeneous brittle media. Mohr-Coulomb failure criterion has recently been involved into the generalized beam (GB) lattice model, and as a result, numerical experiments on concrete under various loading conditions can be conducted. The GB lattice model is further used to investigate the reinforced fiber/particle composites instead of only particle composites as the model did before. Numerical examples are given to show the effectiveness of the modeling procedure, and influences of inclusions (particle, fiber and rebar) on the fracture processes are also discussed. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thickness and component distributions of large-area thin films are an issue of international concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal resonators, deposited film thickness distribution measured by Rutherford backscattering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For surface modification of stamping dies, an inseparable two-dimensional binary-phase gratings is introduced to implement the wavefront transformation of high-power laser beams. The design and fabrication of the gratings are described in detail. Two-dimensional even sampling encoding scheme is adopted to overcome the limitations of conventional Dammann grating in the design of two-dimensional output patterns. High diffractive efficiency (>70%) can be achieved through the transformation of the Gaussian laser beam into several kinds of two-dimensional arrays in focal plan. The application of the binary-phase gratings in the laser surface modification of ductile iron is investigated, and the results show that the hardness and the wear resistance of the sample surface were improved significantly by using the binary-phase gratings. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A more generalized model of a beam resting on a tensionless Reissner foundation is presented. Compared with the Winkler foundation model, the Reissner foundation model is a much improved one. In the Winkler foundation model, there is no shear stress inside the foundation layer and the foundation is assumed to consist of closely spaced, independent springs. The presence of shear stress inside Reissner foundation makes the springs no longer independent and the foundation to deform as a whole. Mathematically, the governing equation of a beam on Reissner foundation is sixth order differential equation compared with fourth order of Winkler one. Because of this order change of the governing equation, new boundary conditions are needed and related discussion is presented. The presence of the shear stress inside the tensionless Reissner foundation together with the unknown feature of contact area/length makes the problem much more difficult than that of Winkler foundation. In the model presented here, the effects of beam dimension, gap distance, loading asymmetry and foundation shear stress on the contact length are all incorporated and studied. As the beam length increases, the results of a finite beam with zero gap distance converge asymptotically to those obtained by the previous model for an infinitely long beam. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High dose Mn was implanted into semi-insulating GaAs substrate to fabricate embedded ferromagnetic Mn-Ga binary particles by mass-analyzed dual ion beam deposit system at room temperature. The properties of as-implanted and annealed samples were measured with X-ray diffraction, high-resolution X-ray diffraction to characterize the structural changes. New phase formed after high temperature annealing. Sample surface image was observed with atomic force microscopy. All the samples showed ferromagnetic behaviour at room temperature. There were some differences between the hysteresis loops of as-implanted and annealed samples as well as the cluster size of the latter was much larger than that of the former through the surface morphology. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavily iron-implanted silicon was prepared by mass-analyzed low-energy dual ion beam deposition technique. Auger electron spectroscopy depth profiles indicate that iron ions are shallowly implanted into the single-crystal silicon substrate and formed 35 nm thick FexSi films. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is partially restored after as-implanted sample was annealed at 400degreesC. There are no new phases formed. Carrier concentration depth profile of annealed sample was measured by Electrochemical C-V method and indicated that FexSi film shows n-type conductivity while silicon substrate is p-type. The p-n junction is formed between FexSi film and silicon substrate showing rectifying effect. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Ga, Gd, As) film was fabricated by the mass-analyzed dual ion-beam epitaxy system with the energy of 1000 eV at room temperature. There was no new peak found except GaAs substrate peaks (0 0 2) and (0 0 4) by X-ray diffraction. Rocking curves were measured for symmetric (0 0 4) reflections to further yield the lattice mismatch information by employing double-crystal X-ray diffraction. The element distributions vary so much due to the ion dose difference from AES depth profiles. The sample surface morphology indicates oxidizing layer roughness is also relative to the Gd ion dose, which leads to islandlike feature appearing on the high-dose sample. One sample shows ferromagnetic behavior at room temperature. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The snap-through and pull-in instabilities of the micromachined arch-shaped beams under an electrostatic loading are studied both theoretically and experimentally. The pull-in instability that results in a system collision with an electrode substrate may lead to a system failure and, thus, limits the system maximum displacement. The beam/plate structure with a flat initial configuration under an electrostatic loading can only experience the pull-in instability. With the different arch configurations, the structure may experience either only the pull-in instability or the snap-through and pull-in instabilities together. As shown in our computation and experiment, those arch-shaped beams with the snap-through instability have the larger maximum displacement compared with the arch-shaped beams with only the pull-in stability and those with the flat initial configuration. The snap-through occurs by exerting a fixed load, and the structure experiences a discontinuous displacement jump without consuming power. Furthermore, after the snap-through jump, the structures are demonstrated to have the capacity to withstand further electrostatic loading without pull-in. Those properties of consuming no power and increasing the structure deflection range without pull-in is very useful in microelectromechanical systems design, which can offer better sensitivity and tuning range.