994 resultados para ELECTRICAL TRANSPORT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil. © 2011 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the dependence of thermal conductivity, thermoelectric power and electrical resistivity on temperature for a bulk, large grain melt-processed Y-Ba-Cu-O (YBCO) high temperature superconductor (HTS) containing two grains separated by a well-defined grain boundary. Transport measurements at temperatures between 10 and 300 K were carried out both within one single grain (intra-granular properties) and across the grain boundary (inter-granular properties). The influence of an applied external magnetic field of up to 8 T on the measured sample properties was also investigated. The presence of the grain boundary is found to affect strongly the electrical resistivity of the melt-processed bulk sample, but has almost no effect on its thermoelectric power and thermal conductivity, within experimental error. The results of this study provide direct evidence that the heat flow in multi-granular melt-processed YBCO bulk samples should be virtually unaffected by the presence of grain boundaries in the material. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the electrical properties of silicon-on-insulator (SOI) photonic crystals as a function of both doping level and air filling factor. The resistance trends can be clearly explained by the presence of a depletion region around the sidewalls of the holes that is caused by band pinning at the surface. To understand the trade-off between the carrier transport and the optical losses due to free electrons in the doped SOI, we also measured the resonant modes of L3 photonic crystal nanocavities and found that surprisingly high doping levels, up to 1018 / cm3, are acceptable for practical devices with Q factors as high as 4× 104. © 2011 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magneto-transport properties of Bi1.5Pb0.4Nb0.1Sr2Ca2Cu 3O10-x polycrystalline, superconducting ceramic are reported. The material was found to be chemically homogeneous and partially textured. The mixed state properties were investigated by measuring the electrical resistivity, longitudinal and transverse (Nernst effect) thermoelectric power, and thermal conductivity. The magnetization and AC susceptibility measurements were also performed. The variation of these characteristics for magnetic fields up to 5 T are discussed and compared to those of the zero field case. The transport entropy and thermal Hall angle are extracted and quantitatively compared to previously reported data of closely related systems. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a multiplexing scheme for the measurement of large numbers of mesoscopic devices in cryogenic systems. The multiplexer is used to contact an array of 256 split gates on a GaAs/AlGaAs heterostructure, in which each split gate can be measured individually. The low-temperature conductance of split-gate devices is governed by quantum mechanics, leading to the appearance of conductance plateaux at intervals of 2e^2/h. A fabrication-limited yield of 94% is achieved for the array, and a "quantum yield" is also defined, to account for disorder affecting the quantum behaviour of the devices. The quantum yield rose from 55% to 86% after illuminating the sample, explained by the corresponding increase in carrier density and mobility of the two-dimensional electron gas. The multiplexer is a scalable architecture, and can be extended to other forms of mesoscopic devices. It overcomes previous limits on the number of devices that can be fabricated on a single chip due to the number of electrical contacts available, without the need to alter existing experimental set ups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurately measuring the electronic properties of nanowires is a crucial step in the development of novel semiconductor nanowire-based devices. With this in mind, optical pump-terahertz probe (OPTP) spectroscopy is ideally suited to studies of nanowires: it provides non-contact measurement of carrier transport and dynamics at room temperature. OPTP spectroscopy has been used to assess key electrical properties, including carrier lifetime and carrier mobility, of GaAs, InAs and InP nanowires. The measurements revealed that InAs nanowires exhibited the highest mobilities and InP nanowires exhibited the lowest surface recombination velocity. © 2013 Copyright SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manipulation of the spin degree of freedom has been demonstrated in a spin-polarized electron plasma in a heterostructure by using exchange-interaction-induced dynamic spin splitting rather than the Rashba and Dresselhaus types, as revealed by time-resolved Kerr rotation. The measured spin splitting increases from 0.256 meV to 0.559 meV as the bias varies from -0.3 V to -0.6 V. Both the sign switch of the Kerr signal and the phase reversal of Larmor precessions have been observed with biases, which all fit into the framework of exchange-interaction-induced spin splitting. The electrical control of it may provide a new effective scheme for manipulating spin-selected transport in spin FET-like devices. Copyright (C) EPLA, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By replacing the flat (Ga1-xAlx)As barrier layer with a trapezoidal AlxGa1-xAs barrier layer, a conventional heterostructure can be operated in enhancement mode. The sheet density of two-dimensional electron gas (2DEG) in the structure can be tuned linearly from N-2D = 0.3 x 10(11) cm(-2) to N-2D = 4.3 x 10(11) cm(-2) by changing the bias on the top gate. The present scheme for gated heterostructures is easy to fabricate and does not require the use of self-alignment photolithography or the deposition of insulating layers. In addition, this scheme facilitates the initial electrical contact to 2DEG. Although, the highest electron mobility obtained for the moment is limited by the background doping level of heterostructures, the mobility should be improved substantially in the future. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO nanocrystals were synthesized by hydrolysis in methanol. X-ray diffraction and photoluminescence spectra confirm that good crystallized ZnO nanoparticles were formed. Utilizing those ZnO nanoparticles and poly [2- methoxy-5 - (3',7'-dimethyloctyloxy)- 1,4-phenylenevinylene] (MDMO-PPV), light emitting devices with indium tin oxide (ITO)/poly(3,4-oxyethyleneoxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS)/ ZnO:MDMO-PPV/Al and ITO/PEDOT:PSS/MDMO-PPV/Al structures were fabricated. Electrolummescence (EL) spectra reveal that EL yield of hybrid MDMO-PPV and ZnO nanocrystals devices increased greatly as compared with pristine MDMO-PPV devices. The current-voltage characteristics indicate that addition of ZnO nanocrystals can facilitate electrical injection and charge transport. The decreased energy barrier to electron injection is responsible for the increased efficiency of electron injection. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified version of the Jain-Roulston (J-R) model is developed that takes into account the compensation effect of B to Ge in strained SiGe layers for the first time. Based on this new model, the distribution of the bandgap narrowing (BGN) between the conduction and valence bands is calculated. The influence of this distribution on the transport characteristics of abrupt SiGe heterojunction bipolar transistors (HBTs) has been further considered by using the tunnelling and thermionic emission mechanisms instead of the drift and diffusion mechanisms at the interfaces where discontinuities in energy levels appear. The results show that our modified J-R model better fits the experimental values, and the energy band structure has a strong influence on electrical characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transport properties of two-dimensional electron gas (2DEG) are crucial to metamorphic high-electron-mobility transistors (MM-HEMT). We have investigated the variations of subband electron mobility and concentration versus temperature from Shubnikov-de Hass oscillations., and variable temperature Hall measurements. The results indicate that the electrical performance is the best when the In content is 0.65 in the channel for MM-HEMT. When the In content exceeds 0.65, a large lattice mismatch will cause dislocations and result in the decrease of mobility and the fall of performance in materials and devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled InAs QD dot-in-a-well (DWELL) structures were grown on GaAs substrate by MBE system, and heterojunction modulation-doped field effect transistor (MODFET) was fabricated. The optical properties of the samples show that the photoluminescence of InAs/GaAs self-assembled quantum dot (SAQD) is at 1.265 mu m at 300 K. The temperature-dependence of the abnormal redshift of InAs SAQD wavelength with the increasing temperature was observed, which is closely related with the inhomogeneous size distribution of the InAs quantum dot. According to the electrical measurement, high electric field current-voltage characteristic of the MODFET device were obtained. The embedded InAs QD of the samples can be regard as scattering centers to the vicinity of the channel electrons. The transport property of the electrons in GaAs channel will be modulated by the QD due to the Coulomb interaction. It has been proposed that a MODFET embedded with InAs QDs presents a novel type of field effect photon detector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using the technique of elastic recoil detection (ERD), we have measured the hydrogen profiles in a-Si:H/a-Si structure samples annealed at various temperatures with and without electrical bias, and investigated the influence of electrical bias on hydrogen diffusion. The results show that hydrogen diffusion in a-Si is significantly enhanced by the action of electrical bias. The existence of the excess carriers, which are introduced by electrical injection, is considered to be responsible for the enhancement of hydrogen diffusion, and the microprocess of hydrogen transport has been exploited.