914 resultados para Deterministic nanofabrication
Resumo:
Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.
Resumo:
A Networked Control System (NCS) is a feedback-driven control system wherein the control loops are closed through a real-time network. Control and feedback signals in an NCS are exchanged among the system’s components in the form of information packets via the network. Nowadays, wireless technologies such as IEEE802.11 are being introduced to modern NCSs as they offer better scalability, larger bandwidth and lower costs. However, this type of network is not designed for NCSs because it introduces a large amount of dropped data, and unpredictable and long transmission latencies due to the characteristics of wireless channels, which are not acceptable for real-time control systems. Real-time control is a class of time-critical application which requires lossless data transmission, small and deterministic delays and jitter. For a real-time control system, network-introduced problems may degrade the system’s performance significantly or even cause system instability. It is therefore important to develop solutions to satisfy real-time requirements in terms of delays, jitter and data losses, and guarantee high levels of performance for time-critical communications in Wireless Networked Control Systems (WNCSs). To improve or even guarantee real-time performance in wireless control systems, this thesis presents several network layout strategies and a new transport layer protocol. Firstly, real-time performances in regard to data transmission delays and reliability of IEEE 802.11b-based UDP/IP NCSs are evaluated through simulations. After analysis of the simulation results, some network layout strategies are presented to achieve relatively small and deterministic network-introduced latencies and reduce data loss rates. These are effective in providing better network performance without performance degradation of other services. After the investigation into the layout strategies, the thesis presents a new transport protocol which is more effcient than UDP and TCP for guaranteeing reliable and time-critical communications in WNCSs. From the networking perspective, introducing appropriate communication schemes, modifying existing network protocols and devising new protocols, have been the most effective and popular ways to improve or even guarantee real-time performance to a certain extent. Most previously proposed schemes and protocols were designed for real-time multimedia communication and they are not suitable for real-time control systems. Therefore, devising a new network protocol that is able to satisfy real-time requirements in WNCSs is the main objective of this research project. The Conditional Retransmission Enabled Transport Protocol (CRETP) is a new network protocol presented in this thesis. Retransmitting unacknowledged data packets is effective in compensating for data losses. However, every data packet in realtime control systems has a deadline and data is assumed invalid or even harmful when its deadline expires. CRETP performs data retransmission only in the case that data is still valid, which guarantees data timeliness and saves memory and network resources. A trade-off between delivery reliability, transmission latency and network resources can be achieved by the conditional retransmission mechanism. Evaluation of protocol performance was conducted through extensive simulations. Comparative studies between CRETP, UDP and TCP were also performed. These results showed that CRETP significantly: 1). improved reliability of communication, 2). guaranteed validity of received data, 3). reduced transmission latency to an acceptable value, and 4). made delays relatively deterministic and predictable. Furthermore, CRETP achieved the best overall performance in comparative studies which makes it the most suitable transport protocol among the three for real-time communications in a WNCS.
Resumo:
A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants
Resumo:
As the graphics race subsides and gamers grow weary of predictable and deterministic game characters, game developers must put aside their “old faithful” finite state machines and look to more advanced techniques that give the users the gaming experience they crave. The next industry breakthrough will be with characters that behave realistically and that can learn and adapt, rather than more polygons, higher resolution textures and more frames-per-second. This paper explores the various artificial intelligence techniques that are currently being used by game developers, as well as techniques that are new to the industry. The techniques covered in this paper are finite state machines, scripting, agents, flocking, fuzzy logic and fuzzy state machines decision trees, neural networks, genetic algorithms and extensible AI. This paper introduces each of these technique, explains how they can be applied to games and how commercial games are currently making use of them. Finally, the effectiveness of these techniques and their future role in the industry are evaluated.
Resumo:
Recently the application of the quasi-steady-state approximation (QSSA) to the stochastic simulation algorithm (SSA) was suggested for the purpose of speeding up stochastic simulations of chemical systems that involve both relatively fast and slow chemical reactions [Rao and Arkin, J. Chem. Phys. 118, 4999 (2003)] and further work has led to the nested and slow-scale SSA. Improved numerical efficiency is obtained by respecting the vastly different time scales characterizing the system and then by advancing only the slow reactions exactly, based on a suitable approximation to the fast reactions. We considerably extend these works by applying the QSSA to numerical methods for the direct solution of the chemical master equation (CME) and, in particular, to the finite state projection algorithm [Munsky and Khammash, J. Chem. Phys. 124, 044104 (2006)], in conjunction with Krylov methods. In addition, we point out some important connections to the literature on the (deterministic) total QSSA (tQSSA) and place the stochastic analogue of the QSSA within the more general framework of aggregation of Markov processes. We demonstrate the new methods on four examples: Michaelis–Menten enzyme kinetics, double phosphorylation, the Goldbeter–Koshland switch, and the mitogen activated protein kinase cascade. Overall, we report dramatic improvements by applying the tQSSA to the CME solver.
Resumo:
The hexagonal resonator characteristics of an individual ZnO-nanonail’s head were investigated via spatially resolved cathodoluminescence (CL) at room temperature. The positions of most of distinct CL peaks in visible range were well matched to those of whispering gallery modes (WGMs) of a hexagonal dielectric cavity when we took birefringence and dispersion of refractive indices into account. The broad and weak peaks for TE polarization in long wavelength range were consistent with refractive-index values below the threshold for total internal inflection. CL peaks that were not matched to WGMs were identified as either triangular quasi-WGM or Fabry–Pérot resonance modes.
Bending and bundling of metal-free vertically aligned ZnO nanowires due to electrostatic interaction
Resumo:
Bending and bundling was observed from vertically aligned arrays of ZnO nanowires with flat (0001) top surfaces, which were synthesized using a vapor-phase method without metal catalysts. Sufficient evidence was found to exclude electron-beam bombardment during scanning electron microscopy as a cause for bending and bundling. We attribute the bending and bundling to electrostatic interactions due to charged (0001) polar surfaces, and also discussed the threshold surface charge densities for the bending and bundling based on a simple cantilever-bending model. Some growth features were indicative of the operation of electrostatic interactions during the growth.
Resumo:
Vertically aligned ZnO nanorods have been grown on silicon substrates pre-coated with thin, less than 10 nm, textured ZnO seeding layers via a vapor-solid mechanism. The ZnO seeding layers, which were essential for vertical alignment of ZnO nanorods without using any metal catalyst, were prepared by decomposing zinc acetate. The structure and the luminescence properties of the ZnO nanorods synthesized onto ZnO seeding layers were investigated and their morphologies were compared with those of single-crystalline GaN substrates and silicon substrates covered with sputtered ZnO flms. Patterning of ZnO seed layers using photolithography allowed the fabrication of patterned ZnO-nanorod arrays.
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.
Resumo:
Experimental action potential (AP) recordings in isolated ventricular myoctes display significant temporal beat-to-beat variability in morphology and duration. Furthermore, significant cell-to-cell differences in AP also exist even for isolated cells originating from the same region of the same heart. However, current mathematical models of ventricular AP fail to replicate the temporal and cell-to-cell variability in AP observed experimentally. In this study, we propose a novel mathematical framework for the development of phenomenological AP models capable of capturing cell-to-cell and temporal variabilty in cardiac APs. A novel stochastic phenomenological model of the AP is developed, based on the deterministic Bueno-Orovio/Fentonmodel. Experimental recordings of AP are fit to the model to produce AP models of individual cells from the apex and the base of the guinea-pig ventricles. Our results show that the phenomenological model is able to capture the considerable differences in AP recorded from isolated cells originating from the location. We demonstrate the closeness of fit to the available experimental data which may be achieved using a phenomenological model, and also demonstrate the ability of the stochastic form of the model to capture the observed beat-to-beat variablity in action potential duration.
Resumo:
This paper investigates the field programmable gate array (FPGA) approach for multi-objective and multi-disciplinary design optimisation (MDO) problems. One class of optimisation method that has been well-studied and established for large and complex problems, such as those inherited in MDO, is multi-objective evolutionary algorithms (MOEAs). The MOEA, nondominated sorting genetic algorithm II (NSGA-II), is hardware implemented on an FPGA chip. The NSGA-II on FPGA application to multi-objective test problem suites has verified the designed implementation effectiveness. Results show that NSGA-II on FPGA is three orders of magnitude better than the PC based counterpart.
Resumo:
The strain-induced self-assembly of suitable semiconductor pairs is an attractive natural route to nanofabrication. To bring to fruition their full potential for actual applications, individual nanostructures need to be combined into ordered patterns in which the location of each single unit is coupled with others and the surrounding environment. Within the Ge/Si model system, we analyze a number of examples of bottom-up strategies in which the shape, positioning, and actual growth mode of epitaxial nanostructures are tailored by manipulating the intrinsic physical processes of heteroepitaxy. The possibility of controlling elastic interactions and, hence, the configuration of self-assembled quantum dots by modulating surface orientation with the miscut angle is discussed. We focus on the use of atomic steps and step bunching as natural templates for nanodot clustering. Then, we consider several different patterning techniques which allow one to harness the natural self-organization dynamics of the system, such as: scanning tunneling nanolithography, focused ion beam and nanoindentation patterning. By analyzing the evolution of the dot assembly by scanning probe microscopy, we follow the pathway which leads to lateral ordering, discussing the thermodynamic and kinetic effects involved in selective nucleation on patterned substrates.
Resumo:
The use of Cellular Automata (CA) for musical purposes has a rich history. In general the mapping of CA states to note-level music representations has focused on pitch mapping and downplayed rhythm. This paper reports experiments in the application of one-dimensional cellular automata to the generation and evolution of rhythmic patterns. A selection of CA tendencies are identified that can be used as compositional tools to control the rhythmic coherence of monophonic passages and the polyphonic texture of musical works in broad-brush, rather than precisely deterministic, ways. This will provide the composer and researcher with a clearer understanding of the useful application of CAs for generative music.
Resumo:
Client puzzles are moderately-hard cryptographic problems neither easy nor impossible to solve that can be used as a counter-measure against denial of service attacks on network protocols. Puzzles based on modular exponentiation are attractive as they provide important properties such as non-parallelisability, deterministic solving time, and linear granularity. We propose an efficient client puzzle based on modular exponentiation. Our puzzle requires only a few modular multiplications for puzzle generation and verification. For a server under denial of service attack, this is a significant improvement as the best known non-parallelisable puzzle proposed by Karame and Capkun (ESORICS 2010) requires at least 2k-bit modular exponentiation, where k is a security parameter. We show that our puzzle satisfies the unforgeability and difficulty properties defined by Chen et al. (Asiacrypt 2009). We present experimental results which show that, for 1024-bit moduli, our proposed puzzle can be up to 30 times faster to verify than the Karame-Capkun puzzle and 99 times faster than the Rivest et al.'s time-lock puzzle.