930 resultados para Caryocorbula swiftiana, anterior-posterior shell length


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early life history stages of marine organisms are generally thought to be more sensitive to environmental stress than adults. Although most marine invertebrates are broadcast spawners, some species are brooders and/or protect their embryos in egg or capsules. Brooding and encapsulation strategies are typically assumed to confer greater safety and protection to embryos, although little is known about the physico-chemical conditions within egg capsules. In the context of ocean acidification, the protective role of encapsulation remains to be investigated. To address this issue, we conducted experiments on the gastropod Crepidula fornicata. This species broods its embryos within capsules located under the female and veliger larvae are released directly into the water column. C. fornicata adults were reared at the current level of CO2 partial pressure (pCO2) (390 µatm) and at elevated levels (750 and 1400 µatm) before and after fertilization and until larval release, such that larval development occurred entirely at a given pCO2. The pCO2 effects on shell morphology, the frequency of abnormalities and mineralization level were investigated on released larvae. Shell length decreased by 6% and shell surface area by 11% at elevated pCO2 (1400 µatm). The percentage of abnormalities was 1.5- to 4-fold higher at 750 µatm and 1400 µatm pCO2, respectively, than at 390 µatm. The intensity of birefringence, used as a proxy for the mineralization level of the larval shell, also decreased with increasing pCO2. These negative results are likely explained by increased intracapsular acidosis due to elevated pCO2 in extracapsular seawater. The encapsulation of C. fornicata embryos did not protect them against the deleterious effects of a predicted pCO2 increase. Nevertheless, C. fornicata larvae seemed less affected than other mollusk species. Further studies are needed to identify the critical points of the life cycle in this species in light of future ocean acidification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the mechanisms of anterior-posterior axis formation are well understood in Drosophila, both embryological and molecular studies suggest significant variation in the mechanisms generating this axis within the Insecta class as a whole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The toil by photosynthesizing cyanobacteria and blue-green algae of nearly three billion years appeared to have finally resulted in the sufficient accumulation of molecular oxygen. So, the stage was set for the emergence, at the ocean bottom, of diverse animals that were consumers of molecular oxygen. It now appears that this Cambrian explosion, during which nearly all the extant animal phyla have emerged, was of an astonishingly short duration, lasting only 6-10 million years. Inasmuch as only a 1% DNA base sequence change is expected in 10 million years under the standard spontaneous mutation rate, I propose that all those diverse animals of the early Cambrian period, some 550 million years ago, were endowed with nearly identical genomes, with differential usage of the same set of genes accounting for the extreme diversities of body forms. Some of the more pertinent genes that are thought to be included in the Cambrian pananimalia genome are as follows. (i) A gene for lysyloxidase that, in the presence of molecular oxygen, crosslinked collagen triple helices to produce ligaments and tendons, thus contributing to the stout bodies of the Cambrian animals. (ii) Genes for hemoglobin; these internal transporters of molecular oxygen are today seen sporadically in members of diverse animal phyla. (iii) The Pax-6 gene for eye formation; the eyes of a ribbon worm to a human are organized by this gene. In animals without eyes, the same gene organizes other sensory systems and organs. (iv) A series of Hox genes for the anterior-posterior (cranio-caudal) body plans: these genes are also present in all phyla of the kingdom Animalia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoids exert pleiotropic effects on the development of vertebrates through the action of retinoic acid receptors (RAR) and retinoid X receptors (RXR). We have investigated the effect of synthetic retinoids selective for RXR and RAR on the development of Xenopus and zebrafish embryos. In Xenopus, both ligands selective for RAR and RXR caused striking malformations along the anterior-posterior axis, whereas in zebrafish only ligands specific for RAR caused embryonic malformations. In Xenopus, RAR- and RXR-selective ligands regulated the expression of the Xlim-1, gsc, and HoxA1 genes similarly as all-trans-retinoic acid. Nevertheless, RXR-selective ligands activated only an RXR responsive reporter but not an RAR responsive reporter introduced by microinjection into the Xenopus embryo, consistent with our failure to detect conversion of an RXR-selective ligand to different derivatives in the embryo. These results suggest that Xenopus embryos possess a unique response pathway in which liganded RXR can control gene expression. Our observations further illustrate the divergence in retinoid responsiveness between different vertebrate species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has long been known that Hox genes are central players in patterning the vertebrate axial skeleton. Extensive genetic studies in the mouse have revealed that the combinatorial activity of Hox genes along the anterior-posterior body axis specifies different vertebral identities. In addition, Hox genes were instrumental for the evolutionary diversification of the vertebrate body plan. In this review, we focus on fundamental questions regarding the intricate mechanisms controlling Hox gene activity. In particular, we discuss the functional relevance of the precise timing of Hox gene activation in the embryo. Moreover, we provide insight into the epigenetic regulatory mechanisms that are likely to control this process and are responsible for the maintenance of spatially restricted Hox expression domains throughout embryonic development. We also analyze how specific features of each Hox protein may contribute to the functional diversity of Hox family. Altogether, the work reviewed here further supports the notion that the Hox program is far more complex than initially assumed. Exciting new findings will surely emerge in the years ahead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extension of the vertebrate body results from the concerted activity of many signals in the posterior embryonic end. Among them, Wnt3a has been shown to play relevant roles in the regulation of axial progenitor activity, mesoderm formation and somitogenesis. However, its impact on axial growth remains to be fully understood. Using a transgenic approach in the mouse, we found that the effect of Wnt3a signaling varies depending on the target tissue. High levels of Wnt3a in the epiblast prevented formation of neural tissues, but did not impair axial progenitors from producing different mesodermal lineages. These mesodermal tissues maintained a remarkable degree of organization, even within a severely malformed embryo. However, from the cells that failed to take a neural fate, only those that left the epithelial layer of the epiblast activated a mesodermal program. The remaining tissue accumulated as a folded epithelium that kept some epiblast-like characteristics. Together with previously published observations, our results suggest a dose-dependent role for Wnt3a in regulating the balance between renewal and selection of differentiation fates of axial progenitors in the epiblast. In the paraxial mesoderm, appropriate regulation of Wnt/β-catenin signaling was required not only for somitogenesis, but also for providing proper anterior-posterior polarity to the somites. Both processes seem to rely on mechanisms with different requirements for feedback modulation of Wnt/β-catenin signaling, once segmentation occurred in the presence of high levels of Wnt3a in the presomitic mesoderm, but not after permanent expression of a constitutively active form of β-catenin. Together, our findings suggest that Wnt3a/β-catenin signaling plays sequential roles during posterior extension, which are strongly dependent on the target tissue. This provides an additional example of how much the functional output of signaling systems depends on the competence of the responding cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While part of a single country, the Indonesian archipelago covers several biogeographic regions, and the high levels of national shipping likely facilitate transfer of non-native organisms between the different regions. Two vessels of a domestic shipping line appear to have served as a transport vector for the Asian green mussel Perna viridis (Linnaeus, 1758) between regions. This species is indigenous in the western but not in the eastern part of the archipelago, separated historically by the Sunda Shelf. The green mussels collected from the hulls of the ferries when in eastern Indonesia showed a significantly lower body condition index than similar-sized individuals from three different western-Indonesian mussel populations. This was presumably due to reduced food supply during the ships' voyages. Although this transportinduced food shortage may initially limit the invasive potential (through reduced reproductive rates) of the translocated individuals, the risk that the species will extend its distributional range further into eastern Indonesia is high. If the species becomes widely established in eastern Indonesia, there will then be an increased risk of incursions to Australia, where the mussel is listed as a high-priority pest species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From early in limb development the transcription factor Gli3 acts to define boundaries of gene expression along the anterior-posterior (AP) axis, establishing asymmetric patterns required to provide positional information. As limb development proceeds, posterior mesenchyme expression of Sonic hedgehog (Shh) regulates Gli3 transcription and post-translational processing to specify digit number and identity. The molecular cascades dependent on Gli3 at later stages of limb development, which link early patterning events with final digit morphogenesis, remain poorly characterised. By analysing the transcriptional consequences of loss of Gli3 in the anterior margin of the E11.5 and E12.5 limb bud in the polydactylous mouse mutant extra-toes (Gli3(Xt/Xt)), we have identified a number of known and novel transcripts dependent on Gli3 in the limb. In particular, we demonstrated that the genes encoding the paired box transcription factor Pax9, the Notch ligand Jagged1 and the cell surface receptor Cdo are dependent on Gli3 for correct expression in the anterior limb mesenchyme. Analysis of expression in compound Shh;Gli3 mutant mouse embryos and in both in vitro and in vivo Shh signaling assays, further defined the importance of Shh regulated processing of Gli3 in controlling gene expression. In particular Pax9 regulation by Shh and Gli3 was shown to be context dependent, with major differences between the limb and somite revealed by Shh bead implantation experiments in the chick. Jagged1 was shown to be induced by Shh in the chick limb and in a C3H10T1/2 cell based signaling assay, with Shh;Gli3 mutant analysis indicating that expression is dependent on Gli3 derepression. Our data have also revealed that perturbation of early patterning events within the Gli3(Xt/Xt), limb culminates in a specific delay of anterior chondrogenesis which is subsequently realised as extra digits. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tropical abalone Haliotis asinina is a wild-caught and cultured species throughout the Indo-Pacific as well as being an emerging model species for the study of haliotids. H. asinina has the fastest recorded natural growth rate of any abalone and reaches sexual maturity within one year. As such, it is a suitable abalone species for selective breeding for commercially important traits such as rapid growth. Estimating the amount of variation in size that is attributable to heritable genetic differences can assist the development of such a selective breeding program. Here we estimated heritability for growth-related traits at 12 months of age by creating a single cohort of 84 families in a full-factorial mating design consisting of 14 sires and 6 dams. Of 500 progeny sampled, 465 were successfully assigned to their parents based on shared alleles at 5 polymorphic microsatellite loci. Using an animal model, heritability estimates were 0.48 +/- 0.15 for shell length, 0.38 +/- 0.13 for shell width and 0.36 +/- 0.13 for weight. Genetic correlations were > 0.98 between shell parameters and weight, indicating that breeding for weight gains could be successfully achieved by selecting for shell length. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Core strength training (CST) has been popular in the fitness industry for a decade. Although strong core muscles are believed to enhance athletic performance, only few scientific studies have been conducted to identify the effectiveness of CST on improving athletic performance. Objective: Identify the effects of a 6-wk CST on running kinetics, lower extremity stability, and running performance in recreational and competitive runners. Design and Setting: A test-retest, randomized control design was used to assess the effect of CST and no CST on ground reaction force (GRF), lower extremity stability scores, and running performance. Participants: Twenty-eight healthy adults (age, 36.9+9.4yrs, height, 168.4+9.6cm, mass, 70.1+15.3kg) were recruited and randomly divided into two groups. Main outcome Measures: GRF was determined by calculating peak impact vertical GRF (vGRF), peak active vGRF, duration of the breaking or horizontal GRF (hGRF), and duration of the propulsive hGRF as measured while running across a force plate. Lower extremity stability in three directions (anterior, posterior, lateral) was assessed using the Star Excursion Balance Test (SEBT). Running performance was determined by 5000 meter run measured on selected outdoor tracks. Six 2 (time) X 2 (condition) mixed-design ANOVA were used to determine if CST influences on each dependent variable, p < .05. Results: No significant interactions were found for any kinetic variables and SEBT score, p>.05. But 5000m run time showed significant interaction, p < .05. SEBT scores improved in both groups, but more in the experimental group. Conclusion: CST did not significantly influence kinetic efficiency and lower extremity stability, but did influence running performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study describes the biofouling composition of the surface of the mangrove oyster Crassostrea rhizophorae (Guilding, 1828), cultivated in an Amazon estuary, located in the state of Pará, northern Brazil. In total, 6.124 macroinvertebrates were sampled in the months of July, August, October and December 2013. Collected epifauna was presented by five taxa (Bivalvia, Gastropoda, Polychaeta, Crustacea and Anthozoa), 20 families and 37 species. Bivalvia was the most abundant class, presenting 5.183 mussels Mytella charruana (d'Orbigny, 1842). Knowledge of biofouling composition associated to the surface cultured bivalves enables the implementation of mitigation measures to the impacts caused by this association.