432 resultados para Carboxyl Synthon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the sol-gel process, organic-inorganic hybrid coatings were synthesized by incorporation of different concentrations of functionalized carbon nanotubes, to improve their mechanical strength and thermal resistance without changing its passivation character. The siloxane-PMMA hybrids were prepared by radical polymerization of methyl methacrylate (MMA) with 3-methacryloxipropiltrimethoxisilane (MPTS) using the thermal initiator benzoyl peroxide (BPO), followed by acid catalyzed hydrolysis and condensation of tetraethoxysilane (TEOS). The analysis of pristine and functionalized carbon nanotubes was carried out using Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. Structural analysis of hybrids was performed by Nuclear Magnetic Resonance, Atomic Force Microscopy and Raman Spectroscopy. For analysis of mechanical strength and thermal stability were performed mechanical compression tests and thermogravimetric analysis, respectively. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion resistance in saline environment. The results showed an effective functionalization of carbon nanotubes with carboxyl groups and conservation of its structure. The hybrids showed high siloxane network connectivity and roughness of approximately 0.3 nm. The incorporation of carbon nanotubes in the hybrid matrix did not change significantly their thermal stability. Samples containing carbon nanotubes exhibit good corrosion resistance (on the order of MΩ in saline environment), but the lack of complete dispersion of carbon nanotubes in the hybrid, resulted in a loss of mechanical and corrosion resistance compared to hybrid matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidized cassava starch is widely used in various industrial sectors, the major textile, paper and more recently by the food industry due to its characteristics, such as expansion property to baking. This study aimed to develop a modification of cassava starch by reaction with hydrogen peroxide and lactic acid, with two different types of drying, in the sun and in oven dried, in order to develop the expansion with increase of carboxyl groups and to evaluate differences between the types of drying and compare them with Expandex® starch and pre-gelatinized. The results indicated an increase in the rate of expansion of the modified starch dry in the sun, however the results of the content carboxylic groups haven't indicated the relationship with their rate expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated the influence of allelic frequency of the human leukocyte antigen (HLA) -DRB1 on the acquisition of antibody response against malaria sporozoite and merozoite peptides in patients with Plasmodium vivax malaria acquired in endemic areas of Brazil. IgG antibodies were detected by enzyme-linked immunosorbent assay against four peptides of circumsporozoite protein (CSP) (amino, carboxyl, and VK210 and VK247 repeats) and peptides of merozoite surface protein 1 (MSP-1), apical membrane antigen 1 (AMA-1), and Duffy-binding protein (DBP). We found an association between HLA-DR3 and HLA-DR5 alleles and lack of antibody response to CSP amino terminal, as well as an association between HILA-DR3 and the highest antibody response to MSP1 (Pv200L). In conclusion, we suggest a potential regulatory role of the H1A-DRB1 alleles in the production of antibodies to a conserved region of P. vivax CSP and MSP1 in Brazilian population exposed to malaria. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electronic and vibrational spectroscopic analysis of p-coumaric acid (HCou) and its deprotonated species was performed by UV-vis and Raman, respectively, and the results were supported by density functional theory (OFT) calculations. Electronic UV-vis spectral data of HCou solutions show that the deprotonation of the carboxyl group (Cou(-)) leads to a blue shift of the lowest energy electronic transition in comparison to the neutral species, whereas the subsequent deprotonation of the phenolic moiety (Cou(2-)) carries out to a more delocalized chromophore. The DFT geometric parameters calculations suggest that the variation in the electronic delocalization for the three organic species is due to different contribution of a quinoid structure that is significantly distorted in the case of Cou(2-). The Raman data of HCou and its sodium salts show that the main spectral features that allow to differentiate the three organic species are those involving the styrene nu(C=C)(sty) vibration at 1600cm(-1) region. Even though the Raman spectra of the sodium salts of Cou(-) and Cou(2-) anions show subtle differences, the appearing of a band at ca. 1598cm(-1) in the Na(2)Cou spectrum, assigned to a mode involving the carboxylate asymmetric stretching, nu(as)(COO), and the styrene stretching, nu(C=C)(sty), is quite characteristic, as confirmed by the theoretical Raman spectrum. Considering that p-coumaric acid is an archetypical phenolic compound with several biological activities that essentially depend upon the medium pH, Raman spectroscopy results reported in this work can provide a proper way to characterize such important phytochemical compound in different protonation states. In order to complement the characterization of the sodium salts, X-ray diffraction (XRD) and thermal analysis were performed. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Travelling wave ion mobility mass spectrometry (TWIM-MS) with post-TWIM and pre-TWIM collision-induced dissociation (CID) experiments were used to form, separate and characterize protomers sampled directly from solutions or generated in the gas phase via CID. When in solution equilibria, these species were transferred to the gas phase via electrospray ionization, and then separated by TWIM-MS. CID performed after TWIM separation (post-TWIM) allowed the characterization of both protomers via structurally diagnostic fragments. Protonated aniline (1) sampled from solution was found to be constituted of a ca. 5:1 mixture of two gaseous protomers, that is, the N-protonated (1a) and ring protonated (1b) molecules, respectively. When dissociated, 1a nearly exclusively loses NH3, whereas 1b displays a much diverse set of fragments. When formed via CID, varying populations of 1a and 1b were detected. Two co-existing protomers of two isomeric porphyrins were also separated and characterized via post-TWIM CID. A deprotonated porphyrin sampled from a basic methanolic solution was found to be constituted predominantly of the protomer arising from deprotonation at the carboxyl group, which dissociates promptly by CO2 loss, but a CID-resistant protomer arising from deprotonation at a porphyrinic ring NH was also detected and characterized. The doubly deprotonated porphyrin was found to be constituted predominantly of a single protomer arising from deprotonation of two carboxyl groups. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der vorliegenden Arbeit werden drei Polyelektrolyt-Architekturen zunehmender Verzweigung auf der Basis von L-Lysin vorgestellt. Zunächst wird auf das Aggregationsverhalten des linearen Blockpolyelektrolyten Polystyrol-b-Poly(L-Lysin) eingegangen. Dabei wird der Einfluss der Lysinblocklänge (NLys = 10…70) bei gleich bleibendem, sehr kurzem hydrophobem Polystyrolsegment untersucht. Wie sich der Polystyrolblock auf die Helixbildung auswirkt, kann mit Hilfe von Zirkulardichroismus nachgewiesen werden. Nach Bestimmung der kritischen Mizellenkonzentration über Fluoreszenzspektroskopie wird mittels statischer Streumethoden (SLS, SANS) eine zylinderförmige Mizelle mit einem Kernradius von 4,4 nm charakterisiert. Im zweiten Abschnitt werden die optischen Eigenschaften von sternförmigen, rot fluoreszierenden Perylendiimid-Poly(L-lysin)-Konjugaten mit variierender Armzahl (n = 4, 8, 16) und Kettenlänge (NLys = 10, 50, 100) beschrieben. Die guten Absorptionseigenschaften und schlechten Fluoreszenzeigenschaften zeigen weder eine Abhängigkeit von der Sekundärstruktur der Poly(L-lysin)-Arme noch von deren Zahl oder Kettenlänge. Der dritte Teil der Arbeit handelt von amin- (Fmoc-, TFAA- oder Z-) geschützten L-Lysindendrone bis zur dritten Generation, welche durch Verknüpfung der Carboxylfunktion der Dendrone mit der Amingruppe von Vinylbenzylamin in Makromonomere überführt werden. Das Polymerisationsverhalten der Makromonomere wird in Abhängigkeit der Dendrongeneration und der Monomerkonzentration zu Beginn der Polymerisation untersucht. Anhand von AFM-Aufnahmen kann nachgewiesen werden, dass das Polystyrolrückgrat der dendronisierten Polymere der ersten Z-geschützten Generation eine Streckung erfährt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research has included the efforts in designing, assembling and structurally and functionally characterizing supramolecular biofunctional architectures for optical biosensing applications. In the first part of the study, a class of interfaces based on the biotin-NeutrAvidin binding matrix for the quantitative control of enzyme surface coverage and activity was developed. Genetically modified ß-lactamase was chosen as a model enzyme and attached to five different types of NeutrAvidin-functionalized chip surfaces through a biotinylated spacer. All matrices are suitable for achieving a controlled enzyme surface density. Data obtained by SPR are in excellent agreement with those derived from optical waveguide measurements. Among the various protein-binding strategies investigated in this study, it was found that stiffness and order between alkanethiol-based SAMs and PEGylated surfaces are very important. Matrix D based on a Nb2O5 coating showed a satisfactory regeneration possibility. The surface-immobilized enzymes were found to be stable and sufficiently active enough for a catalytic activity assay. Many factors, such as the steric crowding effect of surface-attached enzymes, the electrostatic interaction between the negatively charged substrate (Nitrocefin) and the polycationic PLL-g-PEG/PEG-Biotin polymer, mass transport effect, and enzyme orientation, are shown to influence the kinetic parameters of catalytic analysis. Furthermore, a home-built Surface Plasmon Resonance Spectrometer of SPR and a commercial miniature Fiber Optic Absorbance Spectrometer (FOAS), served as a combination set-up for affinity and catalytic biosensor, respectively. The parallel measurements offer the opportunity of on-line activity detection of surface attached enzymes. The immobilized enzyme does not have to be in contact with the catalytic biosensor. The SPR chip can easily be cleaned and used for recycling. Additionally, with regard to the application of FOAS, the integrated SPR technique allows for the quantitative control of the surface density of the enzyme, which is highly relevant for the enzymatic activity. Finally, the miniaturized portable FOAS devices can easily be combined as an add-on device with many other in situ interfacial detection techniques, such as optical waveguide lightmode spectroscopy (OWLS), the quartz crystal microbalance (QCM) measurements, or impedance spectroscopy (IS). Surface plasmon field-enhanced fluorescence spectroscopy (SPFS) allows for an absolute determination of intrinsic rate constants describing the true parameters that control interfacial hybridization. Thus it also allows for a study of the difference of the surface coupling influences between OMCVD gold particles and planar metal films presented in the second part. The multilayer growth process was found to proceed similarly to the way it occurs on planar metal substrates. In contrast to planar bulk metal surfaces, metal colloids exhibit a narrow UV-vis absorption band. This absorption band is observed if the incident photon frequency is resonant with the collective oscillation of the conduction electrons and is known as the localized surface plasmon resonance (LSPR). LSPR excitation results in extremely large molar extinction coefficients, which are due to a combination of both absorption and scattering. When considering metal-enhanced fluorescence we expect the absorption to cause quenching and the scattering to cause enhancement. Our further study will focus on the developing of a detection platform with larger gold particles, which will display a dominant scattering component and enhance the fluorescence signal. Furthermore, the results of sequence-specific detection of DNA hybridization based on OMCVD gold particles provide an excellent application potential for this kind of cheap, simple, and mild preparation protocol applied in this gold fabrication method. In the final chapter, SPFS was used for the in-depth characterizations of the conformational changes of commercial carboxymethyl dextran (CMD) substrate induced by pH and ionic strength variations were studied using surface plasmon resonance spectroscopy. The pH response of CMD is due to the changes in the electrostatics of the system between its protonated and deprotonated forms, while the ionic strength response is attributed from the charge screening effect of the cations that shield the charge of the carboxyl groups and prevent an efficient electrostatic repulsion. Additional studies were performed using SPFS with the aim of fluorophore labeling the carboxymethyl groups. CMD matrices showed typical pH and ionic strength responses, such as high pH and low ionic strength swelling. Furthermore, the effects of the surface charge and the crosslink density of the CMD matrix on the extent of stimuli responses were investigated. The swelling/collapse ratio decreased with decreasing surface concentration of the carboxyl groups and increasing crosslink density. The study of the CMD responses to external and internal variables will provide valuable background information for practical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The idea was to obtain nanowires in a chemical laboratory under convenient and simple conditions by employing templates. Thus it was possible to produce nanochains by interlinking of gold colloids synthesized by the two-phase-method of M. Brust with by making use of vanadiumoxide nanotubes as template. The length of the resulting nanowires is varying between 1100 nm and 200 nm with a diameter of about 16 nm. Due to a flexible linker the obtained nanowires are not completely rigid. These unique structural features could make them interesting objects for structuring and assembling in the nanoscale range. Another way to produce gold nanowires was realized by a two-step surface metallization procedure, using type I collagen fibres as a template. Gold colloids were used to label the collagen fibres by direct electrostatic interaction, followed by growth steps to enhance the size of the adsorbed colloidal gold crystals, resulting in a complete metallization of the template surface. The length of the resulting gold nanowires reaches several micrometers, with a diameter ~ 100 to 120 nm. To gain a deeper insight into the process of biomineralization the cooperative effect of self-assembled monolayers as substrate and a soluble counterpart on the nucleation and crystal growth of calcium phosphate was studied by diffusion techniques with a pH switch as initiator. As soluble component Perlucin and Nacrein were used. Both are proteins originally extracted from marine organisms, the first one from the Abalone shell and the second one from oyster pearls. Both are supposed to facilitate the calcium carbonate formation in vivo. Studies with Perlucin revealed that this protein shows a clear cooperative effect at a very low concentration with a hydrophobic surface promoting the calcium phosphate precipitation resulting in a sponge like structure of hydroxyapatite. The Perlucin molecule is very flexible and is unfolded by adsorbing to the hydrophobic surface and uncovers its active side. Hydrophilic surfaces did not have a deeper impact. Studies with Nacrein as additive have shown that the protein stabilizes octacalcium phosphate at room temperature on carboxylic self-assembled monolayer and at 34 °C on all other employed surfaces by interaction with the mineral. On the hydroxyl-, alkyl-, and amin-terminated self-assembled monolayers at room temperature the octacalcium phosphate get transformed to hydroxyapatite. Main analytical techniques which are used in this work are transmission electron microscopy, high resolution scanning electron microscopy, surface plasmon resonance spectroscopy, atomic force microscopy, Raman micro-spectroscopy and quartz crystal microbalance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polystyrene latex particles modified at the surface with different hydrophilic functional groups were prepared by miniemulsion polymerization and applied to control the crystallization of zinc oxide in aqueous medium. The effects of both latex structure and concentration on the crystal growth, morphology, crystalline structure, and properties of the resulting zinc oxide were analyzed. Depending on the latex additive used, micro- and submicrosized crystals with a broad variety of morphologies were obtained. Among the studied latexes, the carboxyl-derived particles were shown to be a convenient system for further quantitative investigations. In this case, as the additive concentration increases, the aspect ratio of the crystals decreases systematically. Latex particles are assumed to adsorb preferentially onto the fast growing {001} faces of ZnO, interacting with the growth centers and reducing the growth rate in [001]. When zinc oxide is precipitated in the presence of latex, the polymer particles become incorporated into the growing crystals and polymer–inorganic hybrid materials are obtained. These materials are composed of an inorganic and largely undisturbed crystalline matrix in which organic latex particles are embedded. Increasing amounts of latex become incorporated into the growing crystals at increasing overall concentration in the crystallizing system. Photoluminescence (PL) spectra were measured to obtain information on defect centers. Emission spectra of all samples showed a narrow UV peak and a broad band in the green-yellow spectral region. The former emission is attributed to exciton recombination, whereas the latter seems to be related with deep-level donors. Latex appears to be a quencher of the visible emission of zinc oxide. Thus, compared to pure zincite, ZnO–latex hybrid materials show a significantly lower PL intensity in the visible range of the spectrum. Under continuous photoexcitation, a noticeable dynamic behavior of the PL is observed, which can be related to a photodesorption of adsorbed oxygen. These surface-adsorbed oxygen species seem to play a crucial role for the optical properties of the materials and may mediate the tunneling of electrons from the conduction band to preexisting deep-level traps, probably related to intrinsic defects (oxygen vacancies or interstitial zinc). The polymer particles can block the sites where oxygen adsorbs, and the disappearance of the “electron-shuttle” species leads to the observed quenching of the visible emission. Electron paramagnetic resonance (EPR) provided additional information about crystal defects with unpaired electrons. Spectra of all samples exhibit a single signal at g ≈ 1.96, typical for shallow donors. Contrary to the results of other authors, no correlation was possible between the EPR signal and the visible range of PL spectra, which suggests that centers responsible for the visible emission and the EPR signal are different.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calix[4]arenes with urea functions attached to the p-positions of the phenolic units usually form dimers in apolar solvents. Tetraureas functionalized by pyridyl and carboxyl groups form dimers only with bis- or tetraloop tetraureas. This heterodimerization was used for the synthesis of a bis-[3]catenane. Tetraureas functionalized with sulfide functions were synthesized for the preparation of monolayers from the dimeric capsules containing electrochemically active guests on gold. Bis-tetraureacalix[4]arenes singly-linked via their wide rim by rigid spacers were synthesized and their self-assembly to polymers in apolar solvents was proved by the 1H NMR spectroscopy and AFM studies. Dimerization of the first example of the tetraurea calix[4]arenes bridged in 1,3-positions at the narrow rim was proved by 1H NMR spectroscopy. Calix[8]arenes functionalized by urea, amido or naphthalimido groups at their p-positions self-assemble to columnar structures by hydrogen bonding or by π-π-stacking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Zweikomponentensystem DcuSR aus Escherichia coli reguliert in Abhängigkeit von C4-Dicarboxylaten die Expression der Gene der Fumaratatmung. Die Erkennung von C4-Dicarboxylaten erfolgt über die periplasmatische Domäne der Sensorkinase DcuS und führt zur Autophosphorylierung des konservierten Histidinrestes in der Kinasedomäne. Die Phosphatgruppe wird anschließend auf den Responseregulator DcuR übertragen und führt zur Induktion der Zielgene. Dazu gehören der Antiporter DcuB (dcuB), die anaerobe Fumarase B (fumB) und die Fumaratreduktase (frdABCD). DcuS detektiert neben C4-Dicarboxylaten auch Citrat über die periplasmatische Domäne. In dem nah verwandten Sensor CitA wird Citrat spezifisch über die drei Carboxyl- und die Hydroxylgruppe durch die Bindestellen C1, C2, C3 und H erkannt. DcuS benötigt für die Erkennung von C4-Dicarboxylaten und Citrat die gleichen Bindestellen. Die Citratbindung von DcuS ähnelte der von C4-Dicarboxylaten und unterschied sich von der Citraterkennung in CitA. DcuS konnte durch gerichtete Mutagenese der Bindungsstelle in Varianten überführt werden, die spezifisch für C4-Dicarboxylate (DcuSDC) oder Citrat (DcuSCit) waren. DcuSDC und DcuSCit hatten komplementäre Substratspezifitäten und reagierten entweder auf C4-Dicarboxylate oder auf Citrat (und Mesaconat). Citrat wurde vermutlich als C4-Dicarboxylat (mit einem Acetylrest) und somit über die gleichen Bindestellen wie C4-Dicarboxylate erkannt. Die Bindestellen C2 und C3 sind hoch konserviert und essentiell für die Bindung von zwei Carboxylgruppen von Citrat und C4-Dicarboxylaten. Die Stellen C1 und H werden vermutlich für koordinative Zwecke benötigt. Der Fumarat/Succinat-Antiporter DcuB hat neben der Transportaktivität eine regulatorische Aufgabe im DcuSR-System. Die Deletion von DcuB führte zur konstitutiven Expression der dcuB´-´lacZ Reportergenfusion und anderer DcuSR-regulierter Gene in Abwesenheit von C4-Dicarboxylaten. Die Effektor-unabhängige Expression setzte eine intakte periplasmatische Domäne von DcuS voraus und zeigte in Anwesenheit der spezifischen DcuS-Mutanten (DcuSDC, DcuSCit) eine geänderte Antwort. Die lässt vermuten, dass DcuB die regulatorischen Eigenschaften über eine direkte Wechselwirkung mit DcuS ausübt. Um den phosphorylierten Responseregulator DcuR-P in den Ursprungszustand zurückzuführen, muss dieser dephosphoryliert werden. Die bisher unbekannte Dephosphatase kann dabei entweder von dem Responseregulator, der Sensorkinase oder einem weiteren Protein stammen. DcuR verfügt über eine intrinsische Phosphataseaktivität, die durch den Sensor geringfügig stimuliert wurde.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular imaging technologies as Positron Emission Tomography (PET) are playing a key role in drug discovery, development and delivery due to the possibility to quantify e.g. the binding potential in vivo, non-invasively and repetitively. In this context, it provides a significant advance in the understanding of many CNS disorders and conditions. The serotonergic receptor system is involved in a number of important physiological processes and diseases such as depression, schizophrenia, Alzheimer’s disease, sleep or sexual behaviour. Especially, the 5-HT2A and the 5-HT1A receptor subtypes are in the focus of fundamental and clinical research due to the fact that many psychotic drugs interact with these neuronal transmembrane receptors. This work describes the successful development, as well as in vitro and in vivo evaluation of 5-HT2A and 5-HT1A selective antagonistic PET-radiotracers. The major achievements obtained in this thesis are: 1. the development and in vitro evaluation of several 5-HT2A antagonistic compounds, namely MH.MZ (Ki = 9.0 nM), (R)-MH.MZ (Ki = 0.72 nM) and MA-1 (Ki = 3.0 nM). 2. the 18F-labeling procedure of these compounds and their optimization, whereby radiochemical yields > 35 % in high specific activities (> 15 GBq/µmol) could be observed. Synthesis time inclusive secondary synthon synthesis, the radioactive labeling procedure, separation and final formulation took no longer than 120 min and provided the tracer in high radiochemical purity. 3. the in vivo µPET evaluation of [18F]MH.MZ and (R)-[18F]MH.MZ resulting in promising imaging agents of the 5-HT2A receptor status; from which (R)-[18F]MH.MZ seems to be the most promising ligand. 4. the determination of the influence of P-gp on the brain biodistribution of [18F]MH.MZ showing a strong P-gp dependency but no regional alteration. 5. the four-step radiosynthesis and evaluation of [18F]MDL 100907 resulting in another high affine tracer, which is, however, limited due to its low radiochemical yield. 6. the development and evaluation of 3 novel possible 5-HT2A imaging agents combining structural elements of altanserin, MDL 100907 and SR 46349B demonstrating different binding modes of these compounds. 7. the development, the labeling and in vitro evaluation of the novel 5-HT1A antagonistic tracer [18F]AH1.MZ (Ki = 4.2 nM).