972 resultados para COUNTER ELECTRODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their potential for significant fuel consumption savings, Counter-Rotating Open Rotors (CRORs) are currently being considered as an alternative to high-bypass turbofans. When CRORs are mounted on an aircraft, several 'installation effects' arise which are not present when the engine is operated in isolation. This paper investigates how flow features arising from one such effect - The angle-of-attack of the engine centre-line relative to the oncoming flow - can influence the design of CROR engines. Three-dimensional full-annulus unsteady CFD simulations are used to predict the time-varying flow field experienced by each rotor and emphasis is put on the interaction of the frontrotor wake and tip vortex with the rear-rotor. A parametric study is presented that quantifies the rotorrotor interaction as a function of the angle-of-attack. It is shown that angle-of-attack operation significantly changes the flow field and the unsteady lift on both rotors. In particular, a frequency analysis shows that the unsteady lift exhibits sidebands around the rotor-rotor interaction frequencies. Further, a non-linear increase in the total rear-rotor tip unsteadiness is observed for moderate and high angles-of-attack. The results presented in this paper demonstrate that common techniques used to mitigate CROR noise, such as modifying the rotor-rotor axial spacing and rear-rotor crop, can not be applied correctly unless angle-of-attack effects are taken into account. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable battery technologies, including high specific energy and energy density, operation over a wide range of temperatures (-40 to 70. °C) and a low self-discharge rate, which translates into a long shelf-life (~10 years) [1]. However, upon release of the first generation of rechargeable Li batteries, explosions related to the shorting of the circuit through Li dendrites bridging the anode and cathode were observed. As a result, Li metal batteries today are generally relegated to non-rechargeable primary battery applications, because the dendritic growth of Li is associated with the charging and discharging process. However, there still remain significant advantages in realizing rechargeable secondary batteries based on Li metal anodes because they possess superior electrical conductivity, higher specific energy and lower heat generation due to lower internal resistance. One of the most practical solutions is to use a solid polymer electrolyte to act as a physical barrier against dendrite growth. This may enable the use of Li metal once again in rechargeable secondary batteries [2]. Here we report a flexible and solid Li battery using a polymer electrolyte with a hierarchical and highly porous nanocarbon electrode comprising aligned multiwalled carbon nanotubes (CNTs) and carbon nanohorns (CNHs). Electrodes with high specific surface area are realized through the combination of CNHs with CNTs and provide a significant performance enhancement to the solid Li battery performance. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centrifuge coating was implemented to fabricate nanostructured conductive layers through solution processing at room temperature. This coating procedure allows fast evaporation, thereby fixing the nanomaterials in their dispersed state onto a substrate by the centrifuge action. Material wastes were minimized by mitigating the effects of particle reaggregation. Using this method, we fabricate single-wall nanotube coatings on different substrates such as polyethylene terephthalate, polydimethylsiloxane, and an acrylic elastomer with no prior surface modification of the substrate. The effects of the choice of solvents on the morphology and subsequent performance of the coating network are studied. © 2002-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of counter-ions on the coagulation of biologically treated molasses wastewater using iron-based coagulants was investigated. Parameters such as removals of chemical oxygen demand (COD) and color, and residual turbidity, were measured to evaluate coagulation performance. Experimental results showed that ferric chloride and ferric nitrate were more effective than ferric sulfate at optimal dosages, achieving 89 to 90% and 98 to 99% of COD and color removals, respectively, with residual turbidity of less than 5 NTU. High-performance size exclusion chromatography (HPSEC) results revealed differences in the removal of the molecular weight fraction of organic compounds using iron salts. Scanning electron microscopy (SEM) showed randomly formed coagulated flocs characterized with irregular, sheet-like shapes. Nitrate and chloride counter-ions had similar effects on coagulation performance compared to sulfate. Both FeCl3 and Fe(NO3)(3) yielded better results than Fe(SO4)(2) under underdosed and optimum dosage conditions. Coagulation efficiency was less adversely affected in the overdosed regions, however, if sulfate rather than chloride or nitrate was present. Water Environ. Res., 81, 2293 (2009).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructuring boron-doped diamond (BDD) films increases their sensitivity and performance when used as electrodes in electrochemical environments. We have developed a method to produce such nanostructured, porous electrodes by depositing BDD thin film onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (CNTs). The CNTs had previously been exposed to a suspension of nanodiamond in methanol causing them to clump together into "teepee" or "honeycomb" structures. These nanostructured CNT/BDD composite electrodes have been extensively characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Not only do these electrodes possess the excellent, well-known characteristics associated with BDD (large potential window, chemical inertness, low background levels), but also they have electroactive areas and double-layer capacitance values ∼450 times greater than those for the equivalent flat BDD electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the acoustic characterization of a layer of carbon nanotubes (CNT) deposited on AlN solidly mounted resonators is described. The structure of the CNT layer is analyzed by scanning electron microscopy and Raman spectroscopy. The electrical sheet resistance is derived from 4 point probe measurements and from the fitting of the electrical response of the resonators. Values of sheet resistance around 100 Ω/□ are measured. The longitudinal acoustic velocity is derived from the fitting of the electrical response of the resonators using Mason's model, by adjusting the overtones produced in the CNT layer. A mean value of 62000 m·s-1 is obtained, although some devices show values around 90000 m·s -1, close to the theoretical value of 100000 m·s-1. Some results on the deposition of CNT layers on metallic top electrodes and their influence on the performance of the resonator are also presented. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electro-optic switching in short-pitch polymer stabilized chiral nematic liquid crystals was studied and the relative contributions of flexoelectric and dielectric coupling were investigated: polymer stabilization was found to effectively suppress unwanted textural transitions of the chiral nematic liquid crystal and thereby enhance the electro-optical performance (high optical contrast for visible light, a near ideal optical hysteresis, fast electro-optic response). Test cells were studied that possessed interdigitated electrodes to electrically address the liquid crystal. Based on simulations, a well-fitted phenomenological description of the electro-optic response was derived considering both flexoelectro-optic and Kerr-effect based electro-optic response. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A High Temperature Condensation Particle Counter (HT-CPC) is described that operates at an elevated temperature of up to ca. 300. °C such that volatile particles from typical combustion sources are not counted. The HT-CPC is functionally identical to a conventional CPC, the main challenge being to find suitable non-hazardous working fluids, with good stability, and an appropriate vapour pressure. Some key design features are described, and results of modelling which predict the HT-CPC counting efficiency. Experimental results are presented for several candidate fluids when the HT-CPC was challenged with ambient, NaCl and diesel soot particles, and the results show good agreement with modelled predictions, and confirm that counting of particles of diameters down to at least 10. nm was achievable. Possible applications are presented, including measurement of particles from a diesel car engine and comparison with a near PMP system. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper fabrication of high power light emitting diodes (LEDs) with combined transparent electrodes on both P-GaN and N-GaN have been demonstrated. Simulation and experimental results show that comparing with traditional metal N electrodes the efficacy of LEDs with transparent N electrode is increased by more than 10% and it is easier in process than the other techniques. Further more, combining the transparent electrodes with dielectric anti-reflection film, the extraction efficiency can be improved by 5%. At the same time, the transparent electrodes were protected by the dielectric film and the reliability of LEDs can be improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method has been developed to selectively fabricate nano-gap electrodes and nano-channels by conventional lithography. Based on a sacrificial spacer process, we have successfully obtained sub-100-nm nano-gap electrodes and nano-channels and further reduced the dimensions to 20 nm by shrinking the sacrificial spacer size. Our method shows good selectivity between nano-gap electrodes and nano-channels due to different sacrificial spacer etch conditions. There is no length limit for the nano-gap electrode and the nano-channel. The method reported in this paper also allows for wafer scale fabrication, high throughput, low cost, and good compatibility with modern semiconductor technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-07T01:33:41Z No. of bitstreams: 1 ApplPhysLett_96_213505.pdf: 1153920 bytes, checksum: 69931d8deb797813dd478b5dd0e292c0 (MD5)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present multi- frequency radio observational results of the quasar 3C 48. The observations were carried out with the Very Large Array ( VLA) at five frequencies, 0.33, 1.5, 4.8, 8.4, and 22.5 GHz, and with the Multi- Element Radio Linked Interferometer Network ( MERLIN) at the two frequencies of 1.6 and 5 GHz. The source shows a one- sided jet to the north within 1", which then extends to the northeast and becomes diffuse. Two bright components ( N2 and N3), containing most of the flux density, are present in the northern jet. The spectral index of the two components is alpha(N2) similar to -0.99 +/- 0.12 and alpha(N3) similar to - 0.84 +/- 0.23 ( S proportional to nu(alpha)). Our images show the presence of an extended structure surrounding component N2, suggestive of strong interaction between the jet and the interstellar medium ( ISM) of the host galaxy. A steep- spectrum component, labelled S, located 0.25 " southwest to the flat- spectrum component which could be the core of 3C 48, is detected at a significance of > 15 sigma. Both the location and the steepness of the spectrum of component S suggest the presence of a counter- jet in 3C 48.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoelectric properties of the lattice-matched GaAs/AlxGa1-xAs quantum well electrodes and the influence of the electrode structure such as well width, the thickness of outer barrier and the number of period were studied in a nonaqueous electrolyte. A new kind of structure of multiple quantum well electrode with varied well width, possessing the quantum yield three times that of GaAs bulk materials, was designed and fabricated.