987 resultados para Atlantic, (South)
Resumo:
The morphological variability (coiling properties, size and shape) of the planktic foraminifer Contusortuncana contusa (Cushman) in the terminal Cretaceous ocean was examined at eight deep-sea sites and two continental sections from low (16°) to middle (42°) paleolatitudes in both hemispheres. The material used in this study includes samples from the South Atlantic (DSDP Sites 356, 527 and 525A), North Atlantic (Sites 384 and 548A), Indian and Pacific Oceans (DSDP Site 465A and ODP Sites 761C and 762C) and Tethyan Ocean (outcrop sections from El-Kef and Caravaca). On average 45 specimens from two samples per location were analysed, from an interval corresponding approximately to the last 60 kyr of the Cretaceous. No differences in coiling direction (dextral proportions were > 90% in all samples), percentage of kummerform specimens (usually > 50%) and number of chambers in the last whorl (4-5) were observed between the sites. Both test size (expressed as spiral outline area and test volume) and total number of chambers increase significantly towards lower latitudes. Similarly, test conicity, examined by shape coordinate and eigenshape methods, and angularity of the spiral outline show a rather continuous, slight increase towards lower latitudes. Kummerform specimens of C. contusa were slightly larger and more conical than normalforms and possessed substantially more chambers (both totally and in the last whorl). A principal components analysis of the sample means of five variables describing size and shape clearly distinguished high-latitude sites (525A, 527, 548A, 761C and 762C) from low-latitude sites (384, 465A, Caravaca and El-Kef). Specimens from Site 356 are transitional with respect to those two groups. The results indicate: (1) considerable morphological variation in C. contusa during the terminal Cretaceous comparable to that known in many Recent planktic foraminiferal species and (2) a geographical distribution of this variation corresponding to previously suggested biogeographic schemes based on quantitative analysis of planktic foraminiferal assemblages. Despite the differences in sample means, the overall morphology of C. contusa overlaps among the sites studied, supporting the classification of all C. contusa morphotypes as a single species. Similarly, no discrete morphologic groups could be distinguished within any of the samples.
Resumo:
Detailed records of the carbon and oxygen isotopic ratios of Neogloboquadrina pachyderma are compared between nine high-latitude sediment cores, from the Northern and Southern Hemispheres, covering the last 140000 yrs. The strong analogies between the delta13C records permit to define a delta13C stratigraphic scale, with three clear cut transitions simultaneous with the oxygen isotopic transitions 6/5 (125 kyrs.), 5/4 (65 kyrs.), and 2/1 (13 kyrs.). The delta13C records of N. pachyderma in the high-latitude cores, which follow the changes in delta13C of the surface water TCO2 near areas of deep water formation present trends similar to the benthic foraminifera delta13C records in cores V19-30 and M12-392, although amplitudes of the isotopic shifts are different. This implies that a large part of the observed variations represents global changes in the carbon distribution between biosphere and ocean. The 13C/12C ratios of N. pachyderma in the North Atlantic cores display larger regional variations at 18 kyrs. B.P. than at present. To explain these differences, we have plotted the 18 kyrs. B.P. delta13C values of N. pachyderma from 17 cores distributed N of 40°N. Comparison with published surface water temperature distribution at 18 kyrs. B.P. indicates that a strong divergent cyclonic cell, centered approximatively 55°N and 15°W, was active during most of the last ice-age maximum. This hydrology, analogous to the present Weddell Sea, explains the published evidences of bottom water formation, if located on the northern flank of the gyre, and the strong polar front on the southern flank, probable location of intermediate water formation.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
Global databases of calcium carbonate concentrations and mass accumulation rates in Holocene and last glacial maximum sediments were used to estimate the deep-sea sedimentary calcium carbonate burial rate during these two time intervals. Sparse calcite mass accumulation rate data were extrapolated across regions of varying calcium carbonate concentration using a gridded map of calcium carbonate concentrations and the assumption that accumulation of noncarbonate material is uncorrelated with calcite concentration within some geographical region. Mean noncarbonate accumulation rates were estimated within each of nine regions, determined by the distribution and nature of the accumulation rate data. For core-top sediments the regions of reasonable data coverage encompass 67% of the high-calcite (>75%) sediments globally, and within these regions we estimate an accumulation rate of 55.9 ± 3.6 x 10**11 mol/yr. The same regions cover 48% of glacial high-CaCO3 sediments (the smaller fraction is due to a shift of calcite deposition to the poorly sampled South Pacific) and total 44.1 ± 6.0 x 10**11 mol/yr. Projecting both estimates to 100 % coverage yields accumulation estimates of 8.3 x 10**12 mol/yr today and 9.2 x 10**12 mol/yr during glacial time. This is little better than a guess given the incomplete data coverage, but it suggests that glacial deep sea calcite burial rate was probably not considerably faster than today in spite of a presumed decrease in shallow water burial during glacial time.
Resumo:
We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere Oceans (SHO) from 15°S to 64°S. The SHO database combines 3 existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/[DCO3]2- threshold of ~3800 m/[DCO3]2- = ~-10 to -5 µmol/kg for the Pacific and Indian Oceans, and ~4000 m/[DCO3]2- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core-tops beyond these thresholds from the SHO database. This database has 598 core-tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core-tops. We used this database to reconstruct Summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the 3 databases used to compile the SHO database. Thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich, database. We leave this dataset open-ended to future additions; the new core-tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.
Resumo:
Since Dymond et al. (1992, doi:10.1029/92PA00181) proposed the paleoproductivity algorithm based on "Bio-Ba", which relies on a strong correlation between Ba and organic carbon fluxes in sediment traps, this proxy has been applied in many paleoproductivity studies. Barite, the main carrier of particulate barium in the water column and the phase associated with carbon export, has also been suggested as a reliable paleoproductivity proxy in some locations. We demonstrate that Ba(excess) (total barium minus the fraction associated with terrigenous material) frequently overestimates Ba(barite) (barium associated with the mineral barite), most likely due to the inclusion of barium from phases other than barite and terrigenous silicates (e.g., carbonate, organic matter, opal, Fe-Mn oxides, and hydroxides). A comparison between overlying oceanic carbon export and carbon export derived from Ba(excess) shows that the Dymond et al. (1992) algorithm frequently underestimates carbon export but is still a useful carbon export indicator if all caveats are considered before the algorithm is applied. Ba(barite) accumulation rates from a wide range of core top sediments from different oceanic settings are highly correlated to surface ocean 14C and Chlorophyll a measurements of primary production. This relationship varies by ocean basin, but with the application of the appropriate f ratio to 14C and Chlorophyll a primary production estimates, the plot of Ba(barite) accumulation and carbon export for the equatorial Pacific, Atlantic, and Southern Ocean converges to a global relationship that can be used to reconstruct paleo carbon export.
Resumo:
The quantitative diatom analysis of 218 surface sediment samples recovered in the Atlantic and western Indian sector of the Southern Ocean is used to define a base of reference data for paleotemperature estimations from diatom assemblages using the Imbrie and Kipp transfer function method. The criteria which justify the exclusion of samples and species out of the raw data set in order to define a reference database are outlined and discussed. Sensitivity tests with eight data sets were achieved evaluating the effects of overall dominance of single species, different methods of species abundance ranking, and no-analog conditions (e.g., Eucampia Antarctica) on the estimated paleotemperatures. The defined transfer functions were applied on a sediment core from the northern Antarctic zone. Overall dominance of Fragilariopsis kerguelensis in the diatom assemblages resulted in a close affinity between paleotemperature curve and relative abundance pattern of this species downcore. Logarithmic conversion of counting data applied with other ranking methods in order to compensate the dominance of F. kerguelensis revealed the best statistical results. A reliable diatom transfer function for future paleotemperature estimations is presented.
Resumo:
The speciation of dissolved zinc (Zn) was investigated by voltammetry in the Atlantic sector of the Southern Ocean along two transects across the major frontal systems: along the Zero Meridian and across the Drake Passage. In the Southern Ocean south of the APF we found detectable labile inorganic Zn throughout the surface waters in contrast to studies from lower latitudes. Using a combination of ASV titrations and pseudopolarography revealed the presence of significant concentration of electrochemically inert Zn ligands throughout the Southern Ocean. These ligands however were nearly always saturated due to the presence of excess concentrations of dissolved Zn that were associated with the high nutrient waters south of the Antarctic Polar Front (APF). Only in surface waters did the concentration of Zn complexing ligands exceed the dissolved Zn concentrations suggesting a biological source for these ligands. Our findings have clear implications for the biogeochemical cycling of Zn and for the interpretation of paleo records utilizing Zn in opal as a tracer of Zn speciation in the water column.
Resumo:
We analyzed hydrographic data from the northwestern Weddell Sea continental shelf of the three austral winters 1989, 1997, and 2006 and two summers following the last winter cruise. During summer a thermal front exists at ~64° S separating cold southern waters from warm northern waters that have similar characteristics as the deep waters of the central basin of the Bransfield Strait. In winter, the whole continental shelf exhibits southern characteristics with high Neon (Ne) concentrations, indicating a significant input of glacial melt water. The comparison of the winter data from the shallow shelf off the tip of the Antarctic Peninsula, spanning a period of 17 yr, shows a salinity decrease of 0.09 for the whole water column, which has a residence time of <1 yr. We interpret this freshening as being caused by a combination of reduced salt input due to a southward sea ice retreat and higher precipitation during the late 20th century on the western Weddell Sea continental shelf. However, less salinification might also result from a delicate interplay between enhanced salt input due to sea ice formation in coastal areas formerly occupied by Larsen A and B ice shelves and increased Larsen C ice loss.
Resumo:
Carbon isotopic measurements on the benthic foraminiferal genus Cibicidoides document that mean deep ocean delta13C values were 0.46 per mil lower during the last glacial maximum than during the Late Holocene. The geographic distribution of delta13C was altered by changes in the production rate of nutrient-depleted deep water in the North Atlantic. During the Late Holocene, North Atlantic Deep Water, with high delta13C values and low nutrient values, can be found throughout the Atlantic Ocean, and its effects can be traced into the southern ocean where it mixes with recirculated Pacific deep water. During the glaciation, decreased production of North Atlantic Deep Water allowed southern ocean deep water to penetrate farther into the North Atlantic and across low-latitude fracture zones into the eastern Atlantic. Mean southern ocean delta13C values during the glaciation are lower than both North Atlantic and Pacific delta13C values, suggesting that production of nutrient-depleted water occurred in both oceans during the glaciation. Enriched 13C values in shallow cores within the Atlantic Ocean indicate the existence of a nutrient-depleted water mass above 2000 m in this ocean.
Resumo:
In this study we present a global distribution pattern and budget of the minimum flux of particulate organic carbon to the sea floor (J POC alpha). The estimations are based on regionally specific correlations between the diffusive oxygen flux across the sediment-water interface, the total organic carbon content in surface sediments, and the oxygen concentration in bottom waters. For this, we modified the principal equation of Cai and Reimers [1995] as a basic monod reaction rate, applied within 11 regions where in situ measurements of diffusive oxygen uptake exist. By application of the resulting transfer functions to other regions with similar sedimentary conditions and areal interpolation, we calculated a minimum global budget of particulate organic carbon that actually reaches the sea floor of ~0.5 GtC yr**-1 (>1000 m water depth (wd)), whereas approximately 0.002-0.12 GtC yr**-1 is buried in the sediments (0.01-0.4% of surface primary production). Despite the fact that our global budget is in good agreement with previous studies, we found conspicuous differences among the distribution patterns of primary production, calculations based on particle trap collections of the POC flux, and J POC alpha of this study. These deviations, especially located at the southeastern and southwestern Atlantic Ocean, the Greenland and Norwegian Sea and the entire equatorial Pacific Ocean, strongly indicate a considerable influence of lateral particle transport on the vertical link between surface waters and underlying sediments. This observation is supported by sediment trap data. Furthermore, local differences in the availability and quality of the organic matter as well as different transport mechanisms through the water column are discussed.
Resumo:
Sediment cores from the southern continental margin of Australia are near the formation region of Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water and record the changes in these water masses from the last glacial maximum through the present. Carbon and oxygen isotopes were measured on the benthic foraminiferal species Planulina wuellerstrorfi for both the Recent and last glacial maximum sections of the cores and were then used to reconstruct temperature and carbon isotopic water column profiles. The glacial oxygen isotope profile indicates a vertical temperature structure for this region similar to that in today's Subantarctic Zone. Although intermediate water delta13C cannot be used as a nutrient tracer in this region because of the large influence of air-sea carbon isotopic exchange on this water mass, delta13C can be used as a water mass tracer. Today, AAIW properties reflect contributions from cool, fresh Antarctic Surface Waters (2/3) and warm, salty waters from the Indian Ocean (1/3). When examined in conjuction with the glacial delta13C and delta18C data from the north Indian and Southern Oceans, our data suggest a much reduced contribution of North Indian Ocean intermediate water to glacial Antarctic Intermediate Water relative to the contribution of Antarctic Surface Water. This fresher, cooler glacial Antarctic Intermediate Water would be distributed to the intermediate-depth ocean, thus decreasing the transport of salt produced in the North Indian Ocean to the rest of the world's oceans. Combined with evidence for a reduced influence of North Atlantic Deep Water, these results suggest major changes in the pathways for the redistribution of heat and salt in the glacial ocean.
Resumo:
Based on the quantitative study of diatoms and radiolarians, summer sea-surface temperature (SSST) and sea ice distribution were estimated from 122 sediment core localities in the Atlantic, Indian and Pacific sectors of the Southern Ocean to reconstruct the last glacial environment at the EPILOG (19.5-16.0 ka or 23 000-19 000 cal yr. B.P.) time-slice. The statistical methods applied include the Imbrie and Kipp Method, the Modern Analog Technique and the General Additive Model. Summer SSTs reveal greater surface-water cooling than reconstructed by CLIMAP (Geol. Soc. Am. Map Chart. Ser. MC-36 (1981) 1), reaching a maximum (4-5 °C) in the present Subantarctic Zone of the Atlantic and Indian sector. The reconstruction of maximum winter sea ice (WSI) extent is in accordance with CLIMAP, showing an expansion of the WSI field by around 100% compared to the present. Although only limited information is available, the data clearly show that CLIMAP strongly overestimated the glacial summer sea ice extent. As a result of the northward expansion of Antarctic cold waters by 5-10° in latitude and a relatively small displacement of the Subtropical Front, thermal gradients were steepened during the last glacial in the northern zone of the Southern Ocean. Such reconstruction may, however, be inapposite for the Pacific sector. The few data available indicate reduced cooling in the southern Pacific and give suggestion for a non-uniform cooling of the glacial Southern Ocean.
Resumo:
Basement intersected in Holes 525A, 528, and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid- and lower NW flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge. The basalts were erupted approximately 70 Ma, a date consistent with formation at the paleo mid-ocean ridge. The basalt types vary from aphyric quartz tholeiites on the Ridge crest to highly Plagioclase phyric olivine tholeiites on the flank. These show systematic differences in incompatible trace element and isotopic composition, and many element and isotope ratio pairs form systematic trends with the Ridge crest basalts at one end and the highly phyric Ridge flank basalts at the other. The low 143Nd/144Nd (0.51238) and high 87Sr/86Sr (0.70512) ratios of the Ridge crest basalts suggest derivation from an old Nd/Sm and Rb/Sr enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan da Cunha but offset by somewhat lower 143Nd/144Nd values. The isotopic ratio trends may be extrapolated beyond the Ridge flank basalts (which have 143Nd/144Nd of 0.51270 and 87Sr/86Sr of 0.70417) in the direction of typical MORB compositions. These isotopic correlations are equally consistent with mixing of depleted and enriched end-member melts or partial melting of an inhomogeneous, variably enriched mantle source. However, observed Zr-Ba-Nb-Y interelement relationships are inconsistent with any simple two-component model of magma mixing or partial melting. They also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources in the petrogenesis of Walvis Ridge basalts.