285 resultados para Allgemein bildendes Schulwesen
Die effektive Ladung eines Polyelektrolyten in Abhängigkeit der Polymerkonzentration und Ionenstärke
Resumo:
Die Ladungsdichte eines Polyelektrolyten bestimmt im Wesentlichen das spezielle physikochemische Verhalten in Lösung und stellt einen der wichtigsten Parameter bei deren Anwendung dar. Folglich ist ein quantitatives Verständis über die effektive Ladung unabdingbar und stellt nach wie vor einen Schwerpunkt aktueller Polymerforschungen dar. Allgemein anerkannt ist die Tatsache, dass die effektive Ladungsdichte in allen Fällen niedriger ist, als es die chemische Struktur vorgibt. Die vorliegende Arbeit befasst sich mit der quantitativen Bestimmung der effektiven Ladung eines linearen, anionischen Polyelektrolyts in einem organischen Lösungsmittel. Zu diesem Zweck wurde ein Polymer mit geschützten Carboxylatgruppen synthetisiert, das eine nachträgliche quantitative Anpassung der Ladungsdichte durch Verseifung eines Esters erlaubt. Der auf diesemWeg synthetisierte Polyelektrolyt besitzt eine theoretische Ladungsdichte von 20% und wurde mit Lichtstreutechniken, Fluoreszenzkorrelationsspektroskopie und elektrophoretischen Methoden untersucht um anschließend aus den erhaltenen Daten, unter Verwendung verschiedener Theorien, die effektive Ladung in Abhängigkeit der Polymer- und Salzkonzentration zu bestimmen. Die Ergebnisse liefern, in Abhängigkeit der verwendeten Theorie, eine konstante oder von den äußeren Parametern abhängige Ladungsdichte, die immer deutlich unter der theoretisch möglichen liegt.
Resumo:
„Natürlich habe ich mich [...] unausgesetzt mit Mathematik beschäftigt, umso mehr als ich sie für meine erkenntnistheoretisch-philosophischen Studien brauchte, denn ohne Mathematik lässt sich kaum mehr philosophieren.“, schreibt Hermann Broch 1948, ein Schriftsteller, der ca. zehn Jahre zuvor von sich selbst sogar behauptete, das Mathematische sei eine seiner stärksten Begabungen.rnDiesem Hinweis, die Bedeutung der Mathematik für das Brochsche Werk näher zu untersuchen, wurde bis jetzt in der Forschung kaum Folge geleistet. Besonders in Bezug auf sein Spätwerk Die Schuldlosen fehlen solche Betrachtungen ganz, sie scheinen jedoch unentbehrlich für die Entschlüsselung dieses Romans zu sein, der oft zu Unrecht als Nebenarbeit abgewertet wurde, weil ihm „mit gängigen literaturwissenschaftlichen Kategorien […] nicht beizukommen ist“ (Koopmann, 1994). rnDa dieser Aspekt insbesondere mit Blick auf Die Schuldlosen ein Forschungsdesiderat darstellt, war das Ziel der vorliegenden Arbeit, Brochs mathematische Studien genauer nachzuvollziehen und vor diesem Hintergrund eine Neuperspektivierung der Schuldlosen zu leisten. Damit wird eine Grundlage geschaffen, die einen adäquaten Zugang zur Struktur dieses Romans eröffnet.rnDie vorliegende Arbeit ist in zwei Teile gegliedert. Nach einer Untersuchung von Brochs theoretischen Betrachtungen anhand ausgewählter Essays folgt die Interpretation der Schuldlosen aus diesem mathematischen Blickwinkel. Es wird deutlich, dass Brochs Poetik eng mit seinen mathematischen Anschauungen verquickt ist, und somit nachgewiesen, dass sich die spezielle Bauform des Romans wie auch seine besondere Form des Erzählens tatsächlich aus dem mathematischen Denken des Autors ableiten lassen. Broch nutzt insbesondere die mathematische Annäherung an das Unendliche für seine Versuche einer literarischen Erfassung der komplexen Wirklichkeit seiner Zeit. Dabei spielen nicht nur Elemente der fraktalen Geometrie eine zentrale Rolle, sondern auch Brochs eigener Hinweis, es handele sich „um eine Art Novellenroman“ (KW 13/1, 243). Denn tatsächlich ergibt sich aus den poetologischen Forderungen Brochs und ihren Umsetzungen im Roman die Gattung des Novellenromans, wie gezeigt wird. Dabei ist von besonderer Bedeutung, dass Broch dem Mythos eine ähnliche Rolle in der Literatur zuspricht wie der Mathematik in den Wissenschaften allgemein.rnMit seinem Roman Die Schuldlosen hat Hermann Broch Neuland betreten, indem er versuchte, durch seine mathematische Poetik die komplexe Wirklichkeit seiner Epoche abzubilden. Denn „die Ganzheit der Welt ist nicht erfaßbar, indem man deren Atome einzelweise einfängt, sondern nur, indem man deren Grundzüge und deren wesentliche – ja, man möchte sagen, deren mathematische Struktur aufzeigt“ (Broch).
Resumo:
Der Fokus dieser Arbeit lag in der Synthese von funktionellen HPMA-Copolymeren, sowohl für die Darstellung definierter Polymer-Antikörper Konjugate, als auch zum effizienten Transport von p-DNA in Polymer-DNA Komplexen (Polyplexe). Nach ausführlicher physikalischer und chemischer Charakterisierung wurden gezielt ihre Wechselwirkungen mit (Immun)-Zellen untersucht und so ihr Potential für die Verwendung in der Tumor-Immuntherapie aufgezeigt.rnFür das gezielte Ansprechen von bestimmten Immunzellen mit Schlüsselfunktionen besitzen monoklonale Antikörper ein großes Potential. Im Rahmen dieser Arbeit gelang die Darstellung definierter Polymer-Antikörper Konjugate über das gezielte Einführen von Thiol-Gruppen an Antikörper und die Synthese eng verteilter, Maleinimid funktionalisierter HPMA-Copolymere. Diese sehr gut definierten, funktionellen HPMA-Copolymere konnten über die Kombination der RAFT-Polymerisation und Reaktivester Polymeren gewonnen werden. Unterschiedliche Polymerstrukturen ermöglichten die Synthese verschiedener Arten von Polymer-Antikörper Konjugaten. Speziell die Untersuchung der verschiedenen Konjugate aus dem für dendritische Zellen spezifischen aDEC-205 Antikörper an Immunzellen aus dem Knochenmark von Mäusen lieferten wertvolle Erkenntnisse über Struktur-Wirkungsbeziehungen und zeigten die Möglichkeit der gezielten Adressierung von Immunzellen mit Schlüsselfunktionen bei der Aktivierung einer (Tumor)-Immunabwehr am Beispiel von dendritischen Zellen. Gleichzeitig erlaubt der Syntheseweg sowohl die gleichzeitige und kontrollierte Einführung auch komplexerer Stimuli am Polymerrückgrat als auch die Verwendung verschiedener Antikörper.rnÜber die Kombination der RAFT-Polymerisation und polymeren Reaktivestern wurde ebenso die Synthese von neuartigen kationisch-hydrophilen Polylysin-b-poly(HPMA) Blockcopolymeren als effiziente Transporter für den komplexen aber wirkungsvollen Wirkstoff p-DNA in Form von Polymer-DNA Komplexen (Polyplexe) realisiert. Da diese Polyplexe gleichzeitig eine Abschirmung der sensitiven p-DNA über eine poly(HPMA)-Korona vermitteln, stellen sie allgemein ein geeignetes Transportmittel für einen therapeutischen Transport von p-DNA dar. Diese Polyplexe sind in der Lage, humane Nierenkarzinomzellen (HEK-293T Zelllinie) zu transfizieren ohne signifikante Zytotoxizität zu zeigen. Darüber hinaus gelang eine große Steigerung der Transfektionseffizienz, ohne eine gleichzeitige Erhöhung der Zytotoxizität, durch die gezielte Einführung von Redox-stimuliresponsiven Disulfid-Gruppen zwischen den einzelnen Blöcken. Diese Polyplexe stellen einen polymeren Vektor zur transkriptionellen Regulierung von Zellen dar, zum Beispiel für die transkriptionelle Aktivierung von dendritischen Zellen, durch die Verwendung speziell dafür modifizierter p-DNA-Konstrukte. rnDurch die Verknüpfung einer ortsspezifischen enzymatischen Kopplung und kupferfreien Cyclooctin-Azid Kupplung gelang die kontrollierte und kovalente Modifizierung von polymeren Mizellen mit aDEC-205 Antikörpern an der hydrophilen poly(HPMA)-Korona. Diese Methode bietet die Möglichkeit der Anbindung der effektiven aber anspruchsvollen Erkennungsstruktur Antikörper an komplexere Polymerstrukturen und andere nano-partikulären Systeme, zum Beispiel an die zuvor genannten Polyplexe, um eine zellspezifische und verbesserte Aufnahme und Prozessierung zu erreichen.rnDiese Studien zeigen somit, sowohl die Möglichkeit der selektiven Addressierung von Immunzellen mit Schlüsselfunktionen wie dendritischer Zellen, als auch die Möglichkeit der transkriptionellen Regulation von Zellen durch Polyplexe. Sie stellen somit einen ersten Schritt zur Herstellung funktioneller, nanopartikulärer Systeme zur Verwendung in der Tumor-Immuntherapie dar. rn
Resumo:
Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.
Resumo:
Der Fokus dieser Doktorarbeit liegt auf der kontrollierten Benetzung von festen Oberflächen, die in vielen Bereichen, wie zum Beispiel in der Mikrofluidik, für Beschichtungen und in biologischen Studien von Zellen oder Bakterien, von großer Bedeutung ist.rnDer erste Teil dieser Arbeit widmet sich der Frage, wie Nanorauigkeit das Benetzungsverhalten, d.h. die Kontaktwinkel und die Pinningstärke, von hydrophoben und superhydrophoben Beschichtungen beeinflusst. Hierfür wird eine neue Methode entwickelt, um eine nanoraue Silika-Beschichtung über die Gasphase auf eine superhydrophobe Oberfläche, die aus rauen Polystyrol-Silika-Kern-Schale-Partikeln besteht, aufzubringen. Es wird gezeigt, dass die Topographie und Dichte der Nanorauigkeiten bestimmt, ob sich die Superhydrophobizität verringert oder erhöht, d.h. ob sich ein Flüssigkeitstropfen im Nano-Wenzel- oder Nano-Cassie-Zustand befindet. Das verstärkte Pinning im Nano-Wenzel-Zustand beruht auf dem Eindringen von Flüssigkeitsmolekülen in die Nanoporen der Beschichtung. Im Nano-Cassie-Zustand dagegen sitzt der Tropfen auf den Nanorauigkeiten, was das Pinning vermindert. Die experimentellen Ergebnisse werden mit molekulardynamischen Simulationen in Bezug gesetzt, die den Einfluss der Oberflächenbeschichtungsdichte und der Länge von fluorinierten Silanen auf die Hydrophobizität einer Oberfläche untersuchen. rnEs wurden bereits verschiedenste Techniken zur Herstellung von transparenten superhydrophoben, d.h. extrem flüssigkeitsabweisenden, Oberflächen entwickelt. Eine aktuelle Herausforderung liegt darin, Funktionalitäten einzuführen, ohne die superhydrophoben Eigenschaften einer Oberfläche zu verändern. Dies ist extrem anspruchsvoll, da funktionelle Gruppen in der Regel hydrophil sind. In dieser Arbeit wird eine innovative Methode zur Herstellung von transparenten superhydrophoben Oberflächen aus Janus-Mikrosäulen mit variierenden Dimensionen und Topographien entwickelt. Die Janus-Säulen haben hydrophobe Seitenwände und hydrophile Silika-Oberseiten, die anschließend selektiv und ohne Verlust der superhydrophoben Eigenschaften der Oberfläche funktionalisiert werden können. Diese selektive Oberflächenfunktionalisierung wird mittels konfokaler Mikroskopie und durch das chemische Anbinden von fluoreszenten Molekülen an die Säulenoberseiten sichtbar gemacht. Außerdem wird gezeigt, dass das Benetzungsverhalten durch Wechselwirkungen zwischen Flüssigkeit und Festkörper in der Nähe der Benetzungslinie bestimmt wird. Diese Beobachtung widerlegt das allgemein akzeptierte Modell von Cassie und Baxter und beinhaltet, dass hydrophile Flächen, die durch mechanischen Abrieb freigelegt werden, nicht zu einem Verlust der Superhydrophobizität führen müssen, wie allgemein angenommen.rnBenetzung kann auch durch eine räumliche Beschränkung von Flüssigkeiten kontrolliert werden, z.B. in mikrofluidischen Systemen. Hier wird eine modifizierte Stöber-Synthese verwendet, um künstliche und natürliche Faser-Template mit einer Silika-Schicht zu ummanteln. Nach der thermischen Zersetzung des organischen Templat-Materials entstehen wohldefinierte Silika-Kanäle und Kanalkreuzungen mit gleichmäßigen Durchmessern im Nano- und Mikrometerbereich. Auf Grund ihrer Transparenz, mechanischen Stabilität und des großen Länge-zu-Durchmesser-Verhältnisses sind die Kanäle sehr gut geeignet, um die Füllgeschwindigkeiten von Flüssigkeiten mit variierenden Oberflächenspannungen und Viskositäten zu untersuchen. Konfokale Mikroskopie ermöglicht es hierbei, die Füllgeschwindigkeiten über eine Länge von mehreren Millimetern, sowie direkt am Kanaleingang zu messen. Das späte Füllstadium kann sehr gut mit der Lucas-Washburn-Gleichung beschrieben werden. Die anfänglichen Füllgeschwindigkeiten sind jedoch niedriger als theoretisch vorhergesagt. Wohingegen die vorhergehenden Abschnitte dieser Arbeit sich mit der quasistatischen Benetzung beschäftigen, spielt hier die Dynamik der Benetzung eine wichtige Rolle. Tatsächlich lassen sich die beobachteten Abweichungen durch einen geschwindigkeitsabhängigen Fortschreitkontaktwinkel erklären und durch dynamische Benetzungstheorien modellieren. Somit löst diese Arbeit das seit langem diskutierte Problem der Abweichungen von der Lucas-Washburn-Gleichung bei kleinen Füllgeschwindigkeiten.
Resumo:
Das Ziel dieser Arbeit ist die Konstruktion eines Homomorphismus von partiell definierten, graduiert-kommutativen Algebren, der nach Ubergang zu rationalen Kohomologiegruppen mit der Regulatorabbildung reg zwischen motivischer und Deligne-Beilinson Kohomologie übereinstimmt.rnZu Beginn der Arbeit werden verschiedene Komplexe beschrieben, mit denen sich die motivische und die Deligne-Beilinson Kohomologie berechnen lassen.rnIm ersten Kapitel wird der Komplex der höheren Chow Ketten und der Unterkomplex der "alternierenden" Ketten "in guter Lage" eingeführt, die beide die motivische Kohomologie berechnen (letzterer mit rationalen Koeffizienten).rnIn den folgenden beiden Kapiteln werden Komplexe C_D und P_D beschrieben, mit denen sich die (rationale) Deligne-Beilinson Kohomologie berechnen lässt. Diese sind aufgebaut aus sogenannten Strömen, die im zweiten Kapitel eingeführt werden. Verknüpft sind die beiden Komplexe durch eine Auswertungsabbildung ev, die für rationale Koeffizienten zu einem Quasi-Isomorphismus wird. Auf beiden Komplexen lassen sich (Schnitt-)Produkte definieren, von denen jedoch nur das Produkt auf P_D gleichzeitig assoziativ und graduiert-kommutativ ist.rnIm vierten Kapitel wird ganz allgemein für eine Familie von Komplexen, die einer Reihe an Anforderungen genügt, ein (partiell definierter) Homomorphismus (der Regulator) von dem Komplex der höheren Chow Ketten in eben diese Komplexe konstruiert. Die beiden oben genannten Komplexe erfüllen diese Anforderungen und liefern daher Regulatoren reg_C und reg_P
Resumo:
Ziel der Dissertation war es, eine Gesamtbetrachtung der altägyptischen Bienenhaltung zu geben, die Bedeutung der Biene herauszuarbeiten und den Gebrauch des Honigs im alten Ägypten vorzustellen. Darüber hinaus wurde die Herkunft und Zusammensetzung des Honigs untersucht sowie ein Vergleich mit der Bienenhaltung in den Nachbarländern gezogen. rnrnDie Biene ist mehrfach als Symbol oder Dekorationselement vorzufinden. Bereits am Ende des Alten Reiches, einem Zeitpunkt, als sich die Domestikation der Bienen nachweisen läßt, treten Figurenzylinder, Stempelsiegel-Amulette und Amulettanhänger mit dem Bildnis der Biene auf. Auf diesen Zeugnissen repräsentierte sie Schutz, Fruchtbarkeit, Regeneration und Todesüberwindung. Diesen Eigenschaften lagen wahrscheinlich die Beobachtungen der verschiedenen Entwicklungsstadien der Honigbiene vom Ei über die mumienartige Larve bis zur Imago sowie ihre intensive Brutpflege zugrunde. rnrnÜber den Arbeitsablauf und die Organisation des Imkereibetriebes gaben vor allem die Topfaufschriften deutliche Hinweise. Für die Produktion des Honigs waren Imker verantwortlich, die sowohl im Staats- als auch im Tempeldienst stehen konnten. Sie waren in die Struktur der Warenschatzhäuser eingebunden. Meines Erachtens war die Imkerei stärker verbreitet als es die wenigen Quellen erahnen lassen. Denn allein für den Tempelkult wurden große Honigmengen benötigt. Neben den offiziellen Imkern des Königs und der Göttertempel muß es deshalb auch eine private Bienenhaltung gegeben haben. Wahrscheinlich betrieben mehrere Berufsgruppen aus dem Bereich der Landwirtschaft sowie Beamte und Schreiber, die über Land verfügten, eine eigene Honigproduktion. Dies ist aus den Angaben der Steuereinnahmen zu schließen, unter denen sich Produkte der Bienenwirtschaft befanden. rnrnDa aus dem pharaonischen Ägypten keine Berichte über den Ablauf der Bienenhaltung überliefert sind und archäologisch bislang keine Bienenstände in situ belegt sind, wurden vor allem die Beschreibungen griechischer und römischer Autoren sowie der Fund des Bienenhauses aus Tel Rehov in Israel als Vergleichsmaterial herangezogen.rnrnHonig war im pharaonischen Ägypten ein wertvoller Süßstoff, deshalb war die Biene auch in wirtschaftlicher Hinsicht wichtig und ihre ab der 5. Dynastie bildlich nachweisbare Domestikation führte zu höheren Honigerträgen. Honig war neben Fruchtsirup aus Datteln, Feigen oder Johannisbrotfrucht der einzige Süßstoff, da Zuckerrohr und Rübenzucker noch nicht bekannt waren. rnVerschiedene Honigsorten und -begriffe sind nachweißbar. Während bj.t allgemein den Honig bezeichnet, ist mit sn-bj.t Wabenhonig gemeint. Hinzu kommen verschiedene Adjektive, die die Honigsorte näher bestimmen. So wird roter (dSr.t), weißer (HD.t), flüssiger (stf), fester (gmgm), guter (nfr.t) und alter (is.t) unterschieden. rnAls Heilmittel findet Honig in zahlreichen medizinischen Rezepten Verwendung. In dieser Arbeit werden Augenkrankheiten und Fleischwunden näher behandelt. Eine große Rolle kam dem Honig im Götterkult zu. Die zahlreichen Opferstiftungen und Festkalender lassen auf eine üppige Verwendung sowohl im täglichen Tempelritual als auch bei Festen schließen. Durch das Opfern von Honig wollte der König seine Herrschaft über Ägypten sowie die Fruchtbarkeit des Landes sichern. rn
Resumo:
The main objective of this study is to reveal the housing patterns in Cairo as one of the most rapidly urbanizing city in the developing world. The study outlines the evolution of the housing problem and its influencing factors in Egypt generally and in Cairo specifically. The study takes into account the political transition from the national state economy to the open door policy, the neo-liberal period and finally to the housing situation after the January 2011 Revolution. The resulting housing patterns in Cairo Governorate were identified as (1) squatter settlements, (2) semi-informal settlements, (3) deteriorated inner pockets, and (4) formal settlements. rnThe study concluded that the housing patterns in Cairo are reflecting a multifaceted problem resulting in: (1) the imbalance between the high demand for affordable housing units for low-income families and the oversupply of upper-income housing, (2) the vast expansion of informal areas both on agricultural and desert lands, (3) the deterioration of the old parts of Cairo without upgrading or appropriate replacement of the housing structure, and (4) the high vacancy rate of newly constructed apartmentsrnThe evolution and development of the current housing problem were attributed to a number of factors. These factors are demographic factors represented in the rapid growth of the population associated with urbanization under the dictates of poverty, and the progressive increase of the prices of both buildable land and building materials. The study underlined that the current pattern of population density in Cairo Governorate is a direct result of the current housing problems. Around the depopulation core of the city, a ring of relatively stable areas in terms of population density has developed. Population densification, at the expense of the depopulation core, is characterizing the peripheries of the city. The population density in relation to the built-up area was examined using Landsat-7 ETM+ image (176/039). The image was acquired on 24 August 2006 and considered as an ideal source for land cover classification in Cairo since it is compatible with the population census 2006.rnConsidering that the socio-economic setting is a driving force of change of housing demand and that it is an outcome of the accumulated housing problems, the socio-economic deprivations of the inhabitants of Cairo Governorate are analyzed. Small administrative units in Cairo are categorized into four classes based on the Socio-Economic Opportunity Index (SEOI). This index is developed by using multiple domains focusing on the economic, educational and health situation of the residential population. The results show four levels of deprivation which are consistent with the existing housing patterns. Informal areas on state owned land are included in the first category, namely, the “severely deprived” level. Ex-formal areas or deteriorated inner pockets are characterized as “deprived” urban quarters. Semi-informal areas on agricultural land concentrate in the third category of “medium deprived” settlements. Formal or planned areas are included mostly in the fourth category of the “less deprived” parts of Cairo Governorate. rnFor a better understanding of the differences and similarities among the various housing patterns, four areas based on the smallest administrative units of shiakhat were selected for a detailed study. These areas are: (1) El-Ma’desa is representing a severely deprived squatter settlement, (2) Ain el-Sira is an example for an ex-formal deprived area, (3) El-Marg el-Qibliya was selected as a typical semi-informal and medium deprived settlement, and (4) El-Nozha is representing a formal and less deprived area.rnThe analysis at shiakhat level reveals how the socio-economic characteristics and the unregulated urban growth are greatly reflected in the morphological characteristics of the housing patterns in terms of street network and types of residential buildings as well as types of housing tenure. It is also reflected in the functional characteristics in terms of land use mix and its degree of compatibility. It is concluded that the provision and accessibility to public services represents a performance measure of the dysfunctional structure dominating squatter and semi-informal settlements on one hand and ample public services and accessibility in formal areas on the other hand.rn
Resumo:
Diese Masterarbeit wurde im Rahmen des Projekts Language Toolkit erarbeitet, das von der Handelskammer Forlì-Cesena in Zusammenarbeit mit der Scuola di Lingue e Letterature, Traduzione e Interpretazione von Forlì organisiert wurde. Dank dieses Projekts wurde es mir ermöglicht ein 300-stündiges Praktikum bei dem Unternehmen U.Emme in Modigliana (FC) zu absolvieren. Da dieses Unternehmen international sehr aktiv ist, haben sie sich dazu entschieden, ihre Geschäftstexte übersetzen zu lassen. Für diese Masterarbeit wurde die Preisliste von U.Emme aus dem Italienischen ins Deutsche übersetzt. In der Masterarbeit werden der Übersetzungsprozess und die Übersetzung selbst analysiert. Die Analyse beginnt mit der Erläuterung der Kommunikationssituationen des Ausgangs- und des Zieltextes. Dazu wurden zunächst die generellen Merkmale des Texts ergründet, wie Textsorte und –typ, und dann die textexternen und textinternen Charakteristika. Da es sich bei dem Ausgangstext um einen technischen Text handelt, werden auch kurz die allgemeinen Merkmale der Fachsprachen analysiert. Es wurde außerdem eine lexikalische, syntaktische und terminologische Recherche vorgenommen. Zu diesem Zweck wurde ein Korpus gebildet. Außerdem wurde ein Termbase erstellt, um die wichtigsten Fachwörter festzuhalten. Bei der Erstellung terminologischer Ressourcen ist es wichtig, zwischen punktueller und systematischer Terminologiearbeit zu unterscheiden. Die Terminologiearbeit für diesen Text wurde punktuell durchgeführt, das heißt, ohne das gesamte Fachgebiet zu erforschen. Für die Übersetzung selbst wurde SDL Trados Studio 2011 benutzt. Darüber hinaus werden die hauptsächlichen Übersetzungsschwierigkeiten geschildert, die vor allem terminologischer Natur waren. Es wird auch allgemein die Bedeutung der technischen Übersetzung unterstrichen, die in der Zeit der Globalisierung stets gestiegen ist. Die Zusammenarbeit mit dem Unternehmen U.Emme hat sich als eine sehr positive Erfahrung herausgestellt, die es mir ermöglicht hat, meine organisatorischen, sowie meine kommunikativen Fähigkeiten zu verbessern. Außerdem hat mir das Praktikum die Möglichkeit geboten, einen realen Beitrag zur Internationalisierung des Unternehmens zu leisten.
Resumo:
Welche bleibenden Impulse haben Johannes Calvin und der Calvinismus Kirche und Gesellschaft bis heute gegeben? Mit dieser Frage beschäftigen sich anlässlich des 500. Geburtstags des Genfer Reformators die Autorinnen und die Autoren der vorliegenden Beiträge anhand ausgewählter theologischer und wirkungsgeschichtlicher Themen. Gleichzeitig bieten sie eine grundlegende und allgemein verständliche Einführung in Calvins Leben und Theologie, in seine kontinuierliche Relevanz für kirchliche, gesellschaftliche und politische Fragen sowie in die Geschichte der Reformation in der Schweiz und weltweit. Sie blenden dabei auch die kritischen Anfragen an Calvin nicht aus. Der im Auftrag des Schweizerischen Evangelischen Kirchenbunds herausgegebene Sammelband ist eine wissenschaftlich fundierte, leserfreundliche Einführung, die Fragestellungen anregt, Perspektiven eröffnet und Austausch ermöglicht. Mit Beiträgen von Philip Benedict, James D. Bratt, Emidio Campi, Eva-Maria Faber, Eric Fuchs, Wulfert de Greef, Christopher L. Elwood, Ulrich H. J. Körtner, Christian Link, Christian Moser, Andrew Pettegree, Christoph Strohm, Mario Turchetti
Resumo:
Weltweit ist eine Zunahme terroristischer Aktivitäten zu verzeichnen, sodass allgemein damit gerechnet werden muss, dass auch das zivile Verkehrs- und Transportwesen ein bevorzugtes Ziel terroristischer Anschläge darstellt. Mehrfach wurden schon Sprengkörper in Transportmittel des öffentlichen und zivilen Personen- aber auch Güterverkehrs eingeschleust, um die Bevölkerung durch materielle Zerstörung und massive Personenschäden einzuschüchtern und zu beängstigen. Daher ist eine Anpassung der sich derzeit im Einsatz befindlichen Transportbehälter an die geänderten Rahmenbedingungen unerlässlich, um auch den Schutz vor Sprengkörpern, die gemeinsam mit dem Handgepäck in Luft-, Land- und Wasserfahrzeuge eingeschleust werden, zu gewährleisten.
Resumo:
Radio Frequency Identification (RFID) beeinflusst unbestritten zahlreiche Anwendungsgebiete und schafft die Grundlage für die zukünftige Entwicklung logistischer Systeme. Von besonderer Bedeutung ist in diesem Zusammenhang die systematische Identifikation von Einsatzpotenzialen für diese Technologie. Bislang existiert hierfür noch keine allgemein verbreitete Methodik. Diese Problematik greift der folgende Beitrag auf und zeigt, wie aus den technischen Grundlagen und analysierten Praxisanwendungen Identifikationskriterien abgeleitet werden können. Die so erarbeiteten Kriterien werden in ihrer Anwendung anhand eines fiktiven Beispiels erläutert und damit exemplarisch eine mögliche Analysemethodik vorgestellt. 1. Einleitung Die produktionswirtschaftlichen Anforderungen an die Unternehmen sind zunehmend geprägt durch Globalisierung und damit durch eine zunehmende Komplexität sowie vertiefte Arbeitsteiligkeit. Es entsteht eine zunehmend breitere Streuung der Fertigungsstandorte und Kooperationsbeziehungen. Es gibt letztlich mehr Lager- und Umschlagprozesse in der Lieferkette. Andererseits bringt der erhöhte Qualitäts- und Kostendruck steigende Fixkosten mit sich, er zwingt zur ständigen Rationalisierung der Materialwirtschaft. Es besteht der Zwang zum Einsatz neuer technisch-elektronischer Mittel zur Kontrolle und Steuerung der logistischen Ketten. Im Lager bedeutet das eine zunehmende Nutzung der Informations- und Kommunikationstechnik zur Lager- und Fertigungssteuerung, auch in Verbindung mit Forderungen der Rückverfolgbarkeit der Produkte. An die Logistikleistungen werden damit Anforderungen wie Schnelligkeit, Qualität und Kostenminimierung gestellt. Letztlich bestehen die Warenbereitstellungs- und Verteilsysteme aus der technischen Grundstruktur, dem Lagertyp und dessen Geometrie sowie der dabei einsetzbaren Bedientechnik und deren kinematischen Daten. Der organisatorische Rahmen dieser Systeme ist gekennzeichnet durch die Nutzung diverser Ein- und Auslagerstrategien, die auch wesentlich Kosten und Leistungen (Umschlagleistung) des zu betrachtenden Lagersystems bestimmen. Aufgrund der genannten Forderungen muss es gelingen, aus dem eingesetzten technischen System durch organisatorisch effizienten Betrieb maximale Leistung bei gleichzeitig minimal eingesetzten Kosten zu erzielen. Neben den Investitionskosten sind bei der Planung von automatischen Lagersystemen die erreichbaren mittleren Spielzeiten der Bedientechnik von entscheidender Bedeutung, um die erforderliche Umschlagleistung des Lagers zu gewährleisten. Hierzu existieren eine Reihe von Berechnungsvorschriften und –normen. Diese Berechnungen berücksichtigen jedoch nicht die Auswirkungen der Lagerorganisation, wie beispielsweise fahrzeitminimale Kombinationen von Ein- und Auslageraufträgen bei Doppelspielen, Zonierungsmaßnahmen, die Auswirkungen von verschiedenen Füllgraden des Lagers oder Lagerplatzstrategien. 2. Stand der Technik 2.1. Lagertypen Abbildung 1: Systematische Einteilung der Lagertypen In Abbildung 1 sind verschiedene Lagertypen dargestellt und nach Kriterien eingeteilt. Soll eine Einschränkung hinsichtlich am Markt häufig vorkommender automatischer Palettenlager getroffen werden, so sind besonders die in der Abbildung hervorgehobenen Typen zu nennen. Eine Auswahl der einzelnen Lagertypen erfolgt dann anhand von Kosten, Umschlagleistung und bei Kompaktlagern vorrangig anhand von Flächen- und Raumnutzungsgrad. Werden die Kostenunterschiede bei Personal, Rechentechnik und Steuerungssoftware in den verschiedenen Lagertypen und -ausführungen der jeweiligen Typen vernachlässigt, unterscheiden sich die Gesamtkosten der Lager lediglich in der Bedientechnik sowie in den statisch bedingten Kosten der Regalkonstruktion. Die wichtigsten Kosteneinflüsse auf die Regale sind wiederum Bauhöhe und Bauart (Regalkonstruktion oder selbsttragendes Bauwerk). Abbildung 2 zeigt die zu erwartenden Umschlagleistungen1) der verschiedenen Lagertypen in Abhängigkeit der benötigten Stellplatzanzahl. Die darauf folgende Abbildung 3 zeigt die zu erwartenden Investitionskosten1) je Stellplatz. Die berücksichtigten Kenngrößen sind nachstehend dargestellt. Die abgebildeten Kurven machen deutlich, dass insbesondere Umschlagleistung der Lager und deren Flächen- bzw. Raumnutzungsgrad gegensätzlich verlaufen. Somit sind auch die Einsatzgebiete der Lagertypen voneinander abgrenzbar. Während Hochregallager für Anwendungsfälle mit hohem Gutumschlag in Frage kommen, werden die Kompaktlager eher in Objekten mit begrenztem Platz oder hohen Raumkosten (bspw. Kühllager) eingesetzt. Somit sind Kompaktlager auch häufig für die Umplanung bzw. der notwendigen Vergrößerung der Lagerkapazität innerhalb einer bestehenden baulichen Hülle interessant. Abbildung 2: Umschlagleistungen der verschiedenen Lagertypen Abbildung 3: Investitionskosten der einzelnen Lagertypen 2.2. Einzel-/ Doppelspiele Um anhand der Technik und der geometrischen Verhältnisse im Lager die höchstmögliche Umschlagleistung zu erzielen, ist es sinnvoll, Doppelspiele (DS) zu generieren. Somit ist nicht wie bei Einzelspielen (ES) je umgeschlagene Ladeeinheit eine Leerfahrt erforderlich, sondern nur je zweiter Ladeeinheit. Das Bediengerät fährt also vom Einlagerpunkt direkt zum Auslagerpunkt, ohne zum Übergabepunkt zurückkehren zu müssen. Diese Vorgehensweise setzt die Kenntnis der nächsten Fahraufträge und gegebenenfalls die Möglichkeit der Veränderung derer Reihenfolge voraus. Für eine Optimierung der Umschlagleistung ist die bei DS entstehende Leerfahrt (Zwischenfahrstrecke) und damit die Zwischenfahrzeit zu minimieren (vgl. 3.5). Nachfolgend beschriebene Untersuchungen beziehen sich jeweils auf Doppelspiele. Abbildung 4: Darstellung der anzufahrenden Lagerplätze in der Regalwand,links: Einzelspiel, rechts: Doppelspiel 2.3. Berechnungsvorschriften für Umschlagleistungen von Lagern Es existieren eine Reihe von Vorschriften zur Berechnung der Umschlagleistung von Lagern, exemplarisch sind drei Berechnungsvorschriften dargestellt. Die Richtlinie VDI 3561 [VDI3561] ermöglicht die Berechnung der Spielzeit auch für Doppelspiele. Dazu werden zwei Referenzpunkte festgelegt, die den Aus- bzw. Einlagerpunkt darstellen. Ein Doppelspiel besteht dann aus der Summe folgender Einzelzeiten: • der Hinfahrt vom Übergabepunkt zum Einlagerpunkt (P1), • der Leerfahrt vom Ein- zum Auslagerpunkt (P2) und der • Rückfahrt vom Auslagerpunkt zum Übergabepunkt (vgl. Abb.4 rechts). Die Summe dieser Einzelzeiten wird danach mit der Summe der Übergabezeiten addiert. Der Unterschied der Richtlinie und der Berechnungsvorschrift nach [Gud00] bestehen im wesentlichen aus der Lage der Ein- und Auslagerpunkte. Fahrzeitberechnung nach VDI 3561 P1 ; P2 Fahrzeitberechnung nach Gudehus 1) P1 ; P2 1)Annahme: Vernachlässigung von Totzeiten, Lastaufnahmefaktor = 1 Wird davon ausgegangen, dass in Abhängigkeit der Gassengeometrie immer nur eine der beiden Fahrzeitanteile (vertikal bzw. horizontal) spielzeitbestimmend ist, so ergeben sich beide Fahrstrecken zu 4/3 der jeweiligen Gesamtabmessung. Der Unterschied der beiden Berechnungsvorschriften liegt lediglich in der Aufteilung der Gesamtfahrstrecke auf die Teilfahrstrecken Hin-, Rück- bzw. Zwischenfahrt. Da jedoch die Fahrzeit zu den Anfahrpunkten in der Regel nicht von der gleichen Fahrzeitkomponente bestimmt wird, kommt es in der Praxis zu Unterschieden im Berechnungsergebnis. Die unter dem Titel „Leistungsnachweis für Regalbediengeräte, Spielzeiten“ stehende Norm FEM 9.851 [FEM9.851] beschäftigt sich ebenfalls mit der Berechnung von Spielzeiten von Regalbediengeräten (RBG). Dabei werden sechs verschiedene Anwendungsfälle generiert, die am häufigsten in der Praxis vorkommen. Diese unterscheiden sich insbesondere in der Lage der Übergabepunkte für die Ein- und Auslagerung. Dabei werden die Punkte sowohl horizontal als auch vertikal verschoben. Es werden hierbei auch Fälle betrachtet, in denen der Auslagerpunkt nicht mit dem Einlagerpunkt übereinstimmt, sich beispielsweise auch an dem gegenüberliegenden Gassenende befinden kann. Wird der einfachste Fall betrachtet, dass sich der Übergabepunkt für die Ein- und Auslagerung übereinstimmend an einer unteren Ecke der Gasse befindet, stimmen die Berechnungsformeln mit [Gud00] weitgehend überein. 2.4. Kritik und Untersuchungsansatz Die Berechnung der mittleren Spielzeit der einzelnen Lagergassen durch die beschriebenen Normen erfolgt in der Regel ohne die Berücksichtigung der Geschwindigkeitsdiagonalen, deren Steigung c durch nachstehendes Verhältnis gegeben ist. 1. Einleitung Eine umfassende Prozessanalyse ist die Grundlage einer jeden erfolgreichen RFID-Anwendung [o.Verf. 2006]. Die Merkmale, die bei einer solchen Untersuchung zu beachten sind, werden allerdings nicht öffentlich diskutiert. Wie Resch in seinem Ansatz zeigt, ist aber gerade die Analysephase von entscheidender Bedeutung für den späteren Erfolg einer RFID-Anwendung (vgl. Abb. 1). Abbildung 1: Fehlende Methodiken der Prozessanalyse [Resch2005] In dieser Phase besteht der größte Gestaltungsfreiraum für die spätere Umsetzung. Da in dieser Phase das größte Optimierungspotenzial einer RFID-Anwendung festgelegt wird, entscheidet sich bereits zu Beginn eines Projektes wie groß der maximal erreichbare Nutzen einer Lösung sein kann. Bisher existieren keine allgemein verbreiteten Methoden und Kriterien zur Identifikation dieser Einsatz-/Nutzenpotenziale. Die Prozessanalyse ist die Basis zukünftiger RFID-Anwendungen und ist daher entsprechend umfangreich durch zu führen. RFID-Einsatzpotenziale werden aktuell nur in Funktionsbereichen kommuniziert. Diese Pauschalisierung engt die Sicht auf potenzielle Anwendungen allerdings sehr stark ein. Dadurch besteht die Gefahr, dass die vorhandenen Nutzenpotenziale indirekt beteiligter Prozesse nicht beachtet werden. Es ist daher zwingend notwendig möglichst alle material- und informationsflussbezogenen Prozesse auf ein RFID-Einsatzpotenzial hin zu untersuchen. D.h. sowohl die Prozesse mit direktem Materialflussbezug (bspw. Wareneingang) als auch die Prozesse, die nur indirekt, über den Informationsfluss, mit dem Materialfluss verknüpft sind (bspw. Disposition). Der vorliegende Beitrag stellt daher einen ersten Ansatz für die Ermittlung allgemeingültiger Analysekriterien für RFID-Einsatzpotenziale. Die vorgestellte Methodik und der daraus entwickelte Kriterienkatalog sollen es ermöglichen, RFID-Anwendungen in der Analysephase auf ein möglichst vollständiges Nutzengerüst zu stellen und so den maximalen Nutzen einer Anwendung systematisch zu ermitteln. 2. Identifikationskriterien 2.1. Methodik Basierend auf der Überlegung die Kriterien sowohl theoretisch als auch auf Basis von Praxiserfahrungen zu entwickeln, dienen neben der Betrachtung technischer Grundlagen auch Analysen von realisierten Anwendungen und Pilotprojekten als Basis der Kriterienentwicklung. Abbildung 2 zeigt die grundsätzliche Methodik hinter der Entwicklung der Kriterien. Dabei zeigt sich, dass aus dem gewählten Ansatz zwangsläufig zwei differierende Typen von Kriterien entwickelt werden müssen. Technische Kriterien, aus den Grundlagen der RFID beziehen sich vor allem auf das vorherrschende Prozessumfeld. Frequenzspezifische Eigenschaften (Leistungsdaten) und allgemeine, also frequenzübergreifende Eigenschaften der RFID-Technik bilden die Ausgangsbasis für diese Kriteriengruppe. Dabei werden diese technologischen Eigenschaften in Prozessmerkmale überführt, anhand derer im konkreten Prozessumfeld eine Technologieauswahl durchgeführt werden kann. So können potenzielle RFID-Anwendungen auf eine prinzipielle Anwendbarkeit hin überprüft werden. Abbildung. 2: Vorgehen zur Entwicklung der Identifikationskriterien [Resch2005] Die zweite Gruppe der Kriterien, die organisatorischen Kriterien, werden aus Praxiserfahrungen abgeleitet. Basis dieser Analyse sind Prozesse aus realisierten Anwendungen und Pilotprojekten. Dieser praxisbasierte Teil stellt prozessbezogene Merkmale zusammen, deren Schwerpunkt auf prozessspezifischen organisatorischen Merkmalen, bspw. Durchsatz, oder auch Dokumentationsaufwand liegt. Die ausgewählten Praxisbeispiele sind nach ihren individuellen Prozessmerkmalen analysiert worden. Die Ergebnisse wurden stichpunktartig zusammengefasst, in übergeordnete Kategorien gruppiert und abschließend nach ihrem Flussbezug gegliedert. RFID-Anwendungen beeinflussen sowohl materialflussbezogene Prozesse, als auch direkt oder auch indirekt verknüpfte informationsflussbezogene Prozesse. Daher erfolgt eine Ordnung der identifizierten Kriteriengruppen nach ihrem Flussbezug, um so einem Anwender die Betrachtungsweise nachhaltig zu verdeutlichen und die Analyse zu vereinfachen. 2.2. Praxisbeispiele Die analysierten Praxisbeispiele sind zum Großteil in der Automobilindustrie realisiert (vgl. Abb. 3). Die weiteren Anwendungen sind aus der Instandhaltung sicherheitsrelevanter technischer Gebäudeausrüstung, aus einem Hochregallager eines Logistikdienstleisters sowie aus der Luftfahrtindustrie. Abbildung 3: Branchenspezifische Verteilung der Praxisbeispiele Die Auswahl der Praxisbeispiele ist bewusst auf die Automobilindustrie fokussiert. Dieser Industriezweig hat in Deutschland bereits einige Anwendungen und eine Vielzahl an Pilotprojekten initiiert. Die Bandbreite der realisierten Projekte ist sehr groß und deckt daher viele verschiedene Anwendungsfälle ab. Die Ergebnisse der Untersuchung sind aber auch auf andere Branchen übertragbar, da die untersuchten Praxisprojekte Situationen abbilden, die ebenfalls leicht zu übertragen sind. Die analysierten Anwendungen bilden ein sehr breites Feld an Einsatzszenarien ab. Anwendungen mit massenhaften Stückzahlen sind ebenso vertreten, wie Anwendungen mit hohem Spezialisierungscharakter. Die Anwendungen reichen dabei von einfachen Pilotprojekten im Ladungsträgermanagement, bis hin zu komplexen Anwendungen im Bereich der Produktionssteuerung und der unternehmensübergreifenden Koordination von Materialflüssen. Insgesamt verteilen sich die analysierten Anwendungen auf drei Schwerpunktbereiche. Abbildung 4 stellt die Anwendungsbereiche in einer Übersicht zusammen. Abbildung 4: Übersicht der Anwendungsgebiete aus den Praxisanwendungen Anwendungen aus den Bereichen der Produktionssteuerung und des Materialflusses sind dabei am häufigsten vertreten. Während die Anwendungen aus dem Bereich der Instandhaltung, bzw. dem Qualitätsmanagement, meist mit der Hauptanwendung aus dem Bereich der Produktionssteuerung verknüpft sind. So wird bspw. die Dokumentationen der einzelnen Fertigungsstationen i.d.R. sowohl zur Fertigungssteuerung als auch zur Qualitätssicherung genutzt. 2.3. Ergebnisse der Praxisanalyse Die Analyse der Praxisanwendungen brachte in einem ersten Schritt eine Fülle an spezifischen Merkmalen zusammen. Jeder analysierte Prozess wies seine eigenen Merkmale auf, die aber dem Grundsatz nach systematisiert werden konnten. Die so erarbeiteten Merkmale wurden in einem zweiten Schritt gruppiert. Insgesamt ergaben sich fünf Gruppen, die jeweils nach einer, durch die RFID-Technik durchgeführte Funktion benannt sind. Um eine Prozessanalyse mit Hilfe der Kriterien zu erleichtern, ist jede Gruppe ihrem übergeordneten Flusssystem zugeordnet worden. Nachstehende Abbildung 5 zeigt die einzelnen Gruppierungen mit ihrem jeweiligen Flussbezug. Dabei sind jeder Gruppe beispielhafte Merkmale zugeordnet. Abbildung 5: Organisatorische Kriterien zur Identifikation von RFID-Einsatzpotenzialen Die vorliegende Systematisierung von Identifikationskriterien deckt sowohl Aspekte des reinen Materialflusses, als auch die Aspekte der zugehörigen Informationsflüsse ab. Dabei verhält sich der Flussbezug in jeder Kriteriengruppe unterschiedlich. Die Kriterien der Gruppe Identifikation befassen sich ausschließlich mit dem Identifikationsvorgang. Dabei können die erarbeiteten Kriterien in zwei Arten unterschieden werden, quantitative und qualitative Kriterien. Qualitativ messbar sind Kriterien, die sich auf die Anzahl der Identifikationsvorgänge beziehen. Bspw. die Anzahl der Identifikationsvorgänge im betrachteten Prozessverlauf, bezogen auf ein Identifikationsobjekt oder die Anzahl der Identifikationsvorgänge pro Zeiteinheit an einem Identifikationspunkt innerhalb des Prozessverlaufs. Gleichzeitig umfasst diese Gruppe aber auch Kriterien, die nur qualitativ zu bewerten sind. Kriterien wie die Bedeutung einer exakten Identifikation einzelner Teile im Prozess oder auch der aktuelle Aufwand der Identifikation im Prozess lassen sich nur bedingt oder nicht quantifizieren. Diese Kriteriengruppe fokussiert mit ihren Merkmalen vor allem den Materialfluss. Die einzelnen Merkmale beziehen sich auf den tatsächlichen Identifikationsvorgang und nicht auf die zugehörigen Informationsflüsse. Unter dem Begriff Transparenz sind Kriterien gruppiert, die sich mit der Verfolgbarkeit und Übersichtlichkeit von Prozessen befassen. Dabei gilt es sowohl die Bedeutung für den aktuellen Prozess als auch für die abhängigen Prozesse zu ermitteln. Transparenz bzw. die fehlende Transparenz ist der Kern dieser Kriteriengruppe. Qualitative Kriterien sind in dieser Kategorie besonders stark vertreten, da vor allem die Bedeutung bestimmter Aspekte der Prozesstransparenz als Kriterium dient. Prozesstransparenz liegt i.d.R. nicht vor oder wird nur über komplexe Systeme erreicht. Die Bewertung dieser Kriteriengruppe ist höchst variabel, da Prozesstransparenz in ihrer Bedeutung höchst individuell ist, d.h. von Prozess zu Prozess stark variiert. Die Gruppe Konfiguration fasst Merkmale zusammen, die auf objektspezifische Anpassungsarbeiten im Prozessverlauf hinweisen. Diese Tätigkeiten sind i.d.R. mit einem quantifizierbaren Aufwand verbunden und können so leicht erfasst werden. Die RFID-Technologie eröffnet hier, ähnlich wie im Bereich der Identifikation, Chancen zur Automatisierung bestehender Prozesse. Die Kriterien konzentrieren sich in ihrer Zielrichtung daher schwerpunktmäßig auf die Untersuchung von Potenzialen hinsichtlich der Automation von Konfigurationsvorgängen. Ähnlich wie die vorstehende Gruppe der Transparenz, besitzt diese Gruppe ebenfalls einen starken Bezug zu beiden Flusssystemen. In beiden Gruppen liegt der Fokus der betrachteten Merkmale sowohl auf dem Materialfluss und den physischen Aktionen als auch auf den zugehörigen Informationsflüssen mit entsprechenden Tätigkeiten. Die vierte Gruppe Zuordnung enthält primär Merkmale, die sich auf den Informationsfluss beziehen. Im Vordergrund steht die Art und Weise in der innerhalb eines Prozesses Materialflüsse zwischen Quelle und Senke koordiniert werden. Diese Gruppe enthält ebenfalls sowohl qualitativ als auch quantitativ zu bewertenden Merkmale. RFID-Technik kann hier zu einer deutlichen Komplexitätsreduktion, einer Automation sowie der Reduktion von Stillstands- u. Wartezeiten führen. Die letzte Gruppe Datenverwendung und Dokumentation befasst sich beinahe ausschließlich mit Aspekten des Informationsflusses. Als beinahe Komplementär zur Gruppe der Identifikation stehen hier die informationsflussbezogenen Handlungen, ausgelöst durch einen zugehörigen Materialfluss in der Betrachtung. Dabei stehen vor allem Fehlerraten, manuelle Aufwende der Datenverarbeitung und die Anzahl an Medienbrüchen im Informationsfluss im Vordergrund. Auch hier existiert wiederum ein Geflecht aus qualitativen und quantitativen Kriterien, deren Bewertung individuell durchzuführen ist. 2.4. Technische Kriterien Ergänzt werden die organisatorischen Kriterien um die technischen Kriterien. Diese Kriterien leiten sich aus den technischen Grundlagen der RFID-Technik ab. Diese Grundlagen sind zum einen die Eigenschaft der kontakt- und sichtlosen Übertragung von Energie und Daten, zum anderen der physische Aufbau der Komponenten eines RFID-Systems, dem Reader und dem Transponder. Des Weiteren definieren die frequenzspezifischen Eigenschaften der verschiedenen RFID-Systeme unterschiedliche Leistungsparameter, aus denen technische Kriterien abgeleitet werden können. Daraus ergibt sich die logische Trennung in frequenzabhängige und frequenzunabhängige Kriterien. Auszüge dieser Kriterien zeigt nachstehende Abbildung 6 Abbildung 6: Technische Kriterien Die technischen Kriterien dienen eher zur Technologieauswahl, als zu einer reinen Potenzialidentifikation, da ausschließlich limitierende Aspekte der Technologie betrachtet werden. Einflüsse, bedingt durch die genutzte technische Ausrüstung (bspw. metallische Lagertechnik) oder verfahrensbedingte Einflüsse (elektromagnetische Felder, Schweißroboter, o.ä.), werden über diese Kriterien abgebildet und finden so Berücksichtigung in den zu entwickelnden RFID-Szenarien. Die Wirkung dieser Kriterien hängt stark von dem jeweiligen Stand der Technik ab. Galt bspw. der Einsatz von 13,56 MHz Transpondern direkt auf Metall vor fünf Jahren noch als nicht möglich, so ist die Technik mittlerweile so weit entwickelt, dass auch Lösungen in diesem Bereich angeboten werden. Daher muss festgehalten werden, dass die frequenzabhängigen technischen Kriterien im Zeitverlauf variabel in ihrer Wirkung sind und sich mit dem technischen Fortschritt der RFID-Hardware verändern. Atmosphärische Einflüsse auf die RFID-Hardware sind generell für alle Varianten (unabhängig von der Betriebsfrequenz) der RFID-Technik zu beachten. Der Einfluss der Umgebungsbedingungen auf die Integrität der Hardware ist immer zu berücksichtigen. Temperatur, Druck und Staubbelastung sind hier die Hauptgruppen äußerer Einflüsse auf die RFID-Hardware. Auch diese Gruppe der technischen Kriterien muss mit der sich verändernden technischen Leistungsfähigkeit in ihrer Bewertung angepasst werden. 3. Anwendung der Kriterien 3.1. Anwendungsbeispiel Die Anwendung der Kriterien wird im Folgendem anhand eines kurzen Beispiels erläutert. Nachstehende Abbildung 7 zeigt Ausschnitte aus einem fiktiven Prozess innerhalb eines Großlagers. Abbildung 7: Fiktiver Prozess Von der Entladung des LKW bis zur Einlagerung der Paletten ist der Prozess in vier grobe Phasen strukturiert. Zur Identifikation von RFID-Einsatzpotenzialen werden die einzelnen Prozesselemente nach dem in Tabelle 1dargestellten Schema untersucht. Tabelle 1: Exemplarische Anwendung der Kriterien an einem ausgewählten Beispiel Kriteriengruppe Kriterium Einheit Prozesselement Entladen des LKW Bezugsobjekt LKW Palette Identifikation Anzahl ID - Vorgänge pro Objekt 1/Stck. 2 1 Anzahl ID - Objekte im Zeitraum Stck./ZE 25/h 10/min Transparenz Bedeutung exakter Prozesszeiterfassung Qual. Hoch Hoch intransparente Prozessabschnitte ja/nein Ja Ja Konfiguration Anzahl objektspez. Konfigurationsarbeiten 1/Stck. 0 0 Manueller Anteil der Konfiguration Qual. - - Zuordnung Fehleranteil der Zuordnung Q/S Qual. Mittel Gering Komplexität der Zuordnung Q/S Qual. Hoch Hoch Datenverwendung und Dokumentation Anzahl der Änderungen objektspezifischer Daten im Prozess 1/Stck. 8 (6-7) 2 Anzahl der Medienbrüche im Prozess 1/Stck. - - Die Tabelle zeigt, wie einzelne Prozesselemente mit Hilfe der Identifikationskriterien analysiert werden können. Dabei ergeben sich aus den Ausprägungen der einzelnen Kriterien die Nutzenpotenziale auf deren Basis sich eine spätere RFID-Anwendung gestalten und bewerten lässt. Für die Analyse der einzelnen Prozesselemente ist es notwendig, die Kriterien auf ein Bezugsobjekt zu beziehen. Dieses Bezugsobjekt stellt den potenziellen Träger des Transponders dar. Dabei ist zu beachten, dass innerhalb eines Prozesses mehrere Bezugsobjekte vorhanden sein können. Die Analyse muss daher für jedes Bezugsobjekt einzeln durchgeführt werden. Die Zusammenfassung der Analyseergebnisse pro Bezugsobjekt, über die zusammengehörigen Prozesselemente zeigt die Nutzenpotenziale innerhalb der einzelnen Prozesse. 3.2. Verwendung der Ergebnisse und Bewertungsmöglichkeiten identifizierter Einsatzpotenziale Im vorstehenden Absatz wurde gezeigt, wie die erarbeiteten Kriterien zur Prozessanalyse genutzt werden können. Aus der Analyse ergeben sich Nutzenpotenziale für den RFID-Einsatz. Inwieweit diese erkannten Potenziale tatsächlich zu einer wirtschaftlichen RFID-Anwendung führen, muss in einem zweiten Schritt geprüft werden. Dabei muss festgestellt werden, dass es keine RFID-Lösung „von der Stange“ gibt [Lammers2006]. Jede Anwendung muss individuell auf Wirtschaftlichkeit geprüft werden. Dabei spielen vor allem die Kriterien eine starke Rolle, die nur qualitativ erfasst werden können, z. B. die Bedeutung einer exakten Erfassung der Prozesszeit. Quantitativ erfassbare Kriterien sind vergleichsweise einfach in der wirtschaftlichen Beurteilung, obwohl auch für diese Art Kriterium keine allgemein gültigen Richtwerte zur Beurteilung existieren. Zu groß sind hier die Unterschiede zwischen einzelnen Prozessen und den möglichen Einspareffekten, bedingt durch differierende Kostentreiber und Anforderungen an Leistungsfähigkeiten. Weiterhin müssen sowohl qualitative als auch quantitative Kriterien immer im Zusammenhang gesehen werden. Nur dann kann der potenzielle Nutzen einer RFID-Anwendung vollständig ermittelt werden. Erst aus der Kombination dieser beiden Faktorgruppen ergibt sich das maximale Nutzenpotenzial einer RFID-Anwendung. Vor diesem Hintergrund sind die einzelnen Nutzenpotenziale zu erfassen, daraus mögliche RFID-Szenarien zu entwickeln und diese Szenarien einer abschließenden, detaillierten Wirtschaftlichkeitsanalyse zu unterziehen.
Resumo:
Bei der Entwicklung und Auslegung komplexer Materialflusssysteme bilden heutzutage die Erreichung einer hohen Leistungsfähigkeit bei vergleichsweise niedrigen Kosten und einem hohen Servicegrad die maßgeblichen Zielkriterien. In zweiter Reihe eng damit verbunden ist der Kennwert Verfügbarkeit, der das Verhältnis zwischen der Ausfall- und der theoretischen Nutzungszeit dieser Systeme beschreibt. Der Kennwert Verfügbarkeit wird für technische Systeme allgemein in einer Vielzahl unterschiedlicher Richtlinien und Normen definiert. Einige davon sind speziell auf den Bereich der Materialflusssysteme ausgerichtet und dokumentieren auch Berechnungsansätze für die Verfügbarkeit. Trotz dieser Anleitungen ist die Analyse und Bewertung von Verfügbarkeitskennwerten bei der Entwicklung und Inbetriebnahme von Materialflusssystemen wiederholt Gegenstand von Auseinandersetzungen zwischen Kunden und Lieferanten. Der vorliegende Beitrag analysiert diese Situation und skizziert Lösungsansätze.
Resumo:
Die optimale Gestaltung logistischer Systeme und Prozesse bekommt eine immer größere Bedeutung für die Wirtschaftlichkeit und Wettbewerbsfähigkeit von Unternehmen. Für Einzelkomponenten von Materi-alflusssystemen sind neben exakten analytischen Verfahren auch Näherungslösungen und Ersatzmodelle in Form von Polynomen, neuronalen Netzen oder zeitdiskreten Verfahren vorhanden, mit denen eine gute Nachbildung des Verhaltens dieser Komponenten möglich ist. Ziel des Baukastensystems ist es, für diese Vielzahl von Methoden mit ihren spezifischen Ein- und Aus-gangsgrößen eine übergeordnete, einheitliche Kommunikations- und Datenschnittstelle zu definieren. In einem grafischen Editor kann ein Modell eines Materialflusssystems aus solchen Bausteinen gebildet und parametriert werden. Durch Verbindungen zwischen den Bausteinen werden Informationen ausge-tauscht. Die Berechnungen der Bausteine liefern Aussagen zu Auslastungen, Warteschlangen bzw. Warte-zeiten vor den Bausteinen sowie Flussgrößen zur Beschreibung der Abgangströme. The optimal arrangement of logistical systems and operations gets an increased importance for the economicalness and competitiveness of enterprises. For individual components of material flow systems there are also existing approximate solutions and substitute models besides exact analytical calculations in the form of polynomials, neural nets or time-discrete analysis which allows a good analytical description of the behaviour of these components. It is aim of the module system to define a superordinate and unified communication and data interface for all of these variety of methods with her specific input and output quantities. By using a graphic editor, the material flow system can be modelled of such components with specified functions and parameters. Connections between the components allows exchange of information. The calculations of the components provide statements concerning utilization, queue size or waiting time ahead of the components as well as parameters for the description of the departure process. Materialflusssysteme sind Träger innerbetrieblicher Transportprozesse und elementarer Bestandteil logistischer Systeme. Die optimale Gestaltung logistischer Systeme und Prozesse bekommt eine immer größere Bedeutung für die Wirtschaftlichkeit und Wettbewerbsfähigkeit von Unternehmen. Die effiziente Dimensionierung von Materialflusssystemen ist für Planer, Hersteller und Betreiber solcher Anlagen von grundsätzlicher Bedeutung. Für viele bei der Planung materialflusstechnischer Anlagen auftretende Fragestellungen steht noch immer kein Berechnungsverfahren oder -werkzeug zur Verfügung, welches allen drei folgenden Anforderungen gleicherma-ßen gerecht wird: Die Handhabung soll einfach, unkompliziert und schnell sein. Die Berechnungsergebnisse sollen eine hohe Genauigkeit haben. Die Berechnung soll allgemein gültige Ergebnisse liefern. Dabei handelt es sich um Fragestellungen, die durchaus grundlegender Natur sind. Beispielsweise nach den (statistisch) zu erwartenden minimalen und maximalen Auftragsdurchlaufzeiten, nach dem Einfluss von Belas-tungsschwankungen auf die Anlagenleistung, nach vorzusehenden Puffern (Stauplätze) und Leistungsreserven (Auslastung). Für die oben genannten Aufgaben der Materialflussplanung stehen heute hauptsächlich drei Verfahren zur Verfügung (Abb. 1): Faustformeln (gekennzeichnet mit f) sind einfach aber ungenau. Das Systemverhalten von Materialfluss-komponenten beschreiben sie selten über den gesamten Bereich möglicher Betriebsbedingungen und Konfi-gurationen. Das Verhalten von gesamten Materialflusssystemen ist zu komplex, als dass es mit Faustformeln adäquat beschreibbar wäre. Bedienungstheoretische Ansätze erlauben die Beschreibung von Materialflusskomponenten (kleines b) sehr genau und sehr umfassend, soweit Standardmethoden und -modelle der Bedienungstheorie anwendbar sind. Ist diese Voraussetzung nicht gegeben, kann der Aufwand zur Modellbildung schnell erheblich werden. Die Beschreibung von Materialflusssystemen (großes B) als Bedienungsnetzwerke ist nur unter (zum Teil stark) vereinfachenden Annahmen möglich. Solche Vereinfachungen gehen zu Lasten von Genauigkeit und All-gemeingültigkeit der Aussagen. Die Methoden sind häufig sehr komplex, ihre Anwendung erfordert vertief-te Kenntnisse in der Statistik und Stochastik. Simulationsuntersuchungen liefern für Materialflusskomponenten (kleines s) und für Materialflusssysteme (großes S) gleichermaßen genaue Aussagen. Der für die Untersuchungen erforderliche Aufwand hängt dabei weit weniger von den Eigenschaften und der Größe des Systems ab, als es bei bedienungstheoretischen An-sätzen der Fall ist. Die Aussagen der Simulation sind nie universell. Sie betreffen immer nur ein System in einer bestimmten Konfiguration. Die Anwendung der Simulation erfordert Spezialsoftware und vertiefte Kenntnisse in der Modellierung und Programmierung. Verfahren, die genaue und allgemein gültige Aussagen über das Verhalten komplexer Materialflusssysteme liefern können, sind insbesondere in der Phase der Angebotserstellung bzw. in der Phase der Grobplanung von besonderer Wichtigkeit. Andererseits sind heute verfügbare Verfahren aber zu kompliziert und damit unwirt-schaftlich. Gerade in der Phase der Systemgrobplanung werden häufig Änderungen in der Struktur des Systems notwendig, welche z.B. beim Einsatz der Simulation zu erheblichem Änderungsaufwand am Modell führt. Oftmals können solche Änderungen nicht schnell genug ausgeführt werden. Damit bleiben in der Praxis oft erhebliche Planungsunsicherheiten bestehen. Der Grundgedanke des Baukastensystems besteht in der Modularisierung von Materialflusssystemen in einzelne Bausteine und Berechnungen zum Verhalten dieser Komponenten. Die betrachteten Module sind Materialfluss-komponenten, die eine bestimmte logistische Funktion in einer konstruktiv bzw. steuerungstechnisch bedingten, definierten Weise ausführen. Das Verhalten einer Komponente wird durch Belastungen (Durchsatz) und techni-sche Parameter (Geschwindigkeit, Schaltzeit o.ä.) beeinflusst und kann durch ein adäquates mathematisches Modell quantifiziert werden. Das offene Baukastensystem soll dabei vor allem einen konzeptionellen Rahmen für die Integration derartiger Modellbausteine bilden. Es umfasst neben der Bausteinmodularisierung die Problematik der Kommunikation zwischen den Bausteinen (Schnittstellen) sowie Möglichkeiten zur Visualisierung von Ergebnissen. Das daraus abgeleitete softwaretechnische Konzept berücksichtigt neben der einheitlichen Integration der zum Teil stark unterschiedlichen Berechnungsverfahren für einzelne Materialflusskomponenten auch einheitliche Definitionen zur Beschreibung von benötigten Eingangsparametern einschließlich der Randbedingungen (Defini-tionsbereich) und Plausibilitätskontrollen sowie zur Ergebnisbereitstellung. Äußerst wichtig war die Zielstellung, das System offen und erweiterbar zu gestalten: Prototypisch wurden zwar einzelne vorliegende Bausteine integ-riert, es ist aber jederzeit möglich, weitere Verfahren in Form eines Bausteines zu implementieren und in das Baukastensystem einzubringen. Die Ergebnisse der Berechnungen für ein einzelnes Element (Output) fließen zugleich als Input in das nachfol-gende Element ein: Genau wie im realen Materialflusssystem durch Aneinanderreihung einzelner fördertechni-scher Elemente der Materialfluss realisiert wird, kommt es im Baukasten durch Verknüpfung der Bausteine zur Übertragung der relevanten Informationen, mit denen der Fluss beschrieben werden kann. Durch die Weitergabe der Ergebnisse kann trotz Modularisierung in einzelne Bausteine das Verhalten eines gesamten Materialflusssys-tems bestimmt werden. Daher sind auch hier einheitliche Festlegungen zu Art und Umfang der Übergabeparame-ter zwischen den Bausteinen erforderlich. Unter einem Baustein soll ein Modell einer Materialflusskomponente verstanden werden, welches das Verhalten dieser Komponente beim Vorliegen bestimmter Belastungen beschreibt. Dieses Verhalten ist insbesondere gekennzeichnet durch Warteschlangen und Wartezeiten, die vor der Komponente entstehen, durch Auslastung (Besetztanteil) der Komponente selbst und durch die Verteilung des zeitlichen Abstand (Variabilität) des die Komponente verlassenden Stroms an Transporteinheiten. Maßgeblich bestimmt wird dieses Verhalten durch Intensität und Variabilität des ankommenden Stroms an Transporteinheiten, durch die Arbeitsweise (z.B. stetig / unstetig, stochastisch / deterministisch) und zeitliche Inanspruchnahme der Komponente sowie durch Steuerungsregeln, mit denen die Reihenfolge (Priorisierung / Vorfahrt) und/oder Dauer der Abarbeitung (z.B. Regalbediengerät mit Strategie „Minimierung des Leerfahrtan-teils“) verändert werden. Im Grunde genommen beinhaltet ein Baustein damit ein mathematisches Modell, das einen oder mehrere an-kommende Ströme von Transporteinheiten in einen oder mehrere abgehende Ströme transformiert (Abb. 2). Derartige Modelle gibt es beispielsweise in Form von Bedienmodellen ([Gnedenko1984], [Fischer1990 u.a.]), zeitdiskreten Modellen ([Arnold2005], [Furmans1992]), künstlichen neuronalen Netzen ([Schulze2000], [Markwardt2003]), Polynomen ([Schulze1998]). Die zu Grunde liegenden Verfahren (analytisch, simulativ, numerisch) unterscheiden sich zwar erheblich, genü-gen aber prinzipiell den genannten Anforderungen. Die Fixierung auf ein mathematisches Modell ist aber nicht hinreichend, vielmehr bedarf es für einen Baustein auch definierter Schnittstellen, mit denen der Informationsaustausch erfolgen kann (Abb. 3). Dazu zählen neben der einheitlichen Bereitstellung von Informationen über die ankommenden und abgehenden Materialströme auch die Berücksichtigung einer individuellen Parametrierung der Bausteine sowie die Möglichkeit zur Interaktion mit dem Bediener (Anordnung, Parametrierung und Visualisierung). Das offene Konzept erlaubt das eigenständige Entwickeln und Aufnehmen neuer Bausteine in den Baukasten. Dazu ergibt sich als weitere Anforderung die einfache Konfigurierbarkeit eines Bausteins hinsichtlich Identifika-tion, Aussehen und Leistungsbeschreibung. An einen Baustein innerhalb des Baukastensystems werden weiter-hin die folgenden Anforderungen gestellt: Jeder Baustein ist eine in sich abgeschlossene Einheit und kann nur über die Ein- und Ausgänge mit seiner Umgebung kommunizieren. Damit ist ausgeschlossen, dass ein Baustein den Zustand eines ande-ren Bausteins beeinflussen kann. Das führt zu den beiden Lokalitätsbedingungen: Es gibt keine �����bergeordnete Steuerung, die in Abhängigkeit vom aktuellen Systemzustand dispositive Entscheidungen (z.B. zur Routenplanung) trifft. Blockierungen in Folge von Warteschlangen haben keine Auswirkungen auf die Funktion an-derer Bausteine. Bausteine beinhalten in sich abgeschlossene Verfahren zur Dimensionierung einer Komponente (Klas-se) des Materialflusssystems (z.B. Einschleusung auf einen Sorter, Drehtisch als Verzweigungselement oder als Eckumsetzer). Dabei werden auf Grund von technischen Parametern, Steuerungsstrategien und Belastungsannahmen (Durchsatz, Zeitverteilungen) Ergebnisse ermittelt. Ergebnisse im Sinne dieses Bausteinkonzepts sind Auslastungen, Warteschlangen bzw. Wartezeiten vor dem Baustein sowie Flussgrößen zur Beschreibung des Abgangstroms. Als Beschreibung eignen sich sowohl einzelne Kennwerte (Mittelwert, Varianz, Quantile) als auch statische Verteilungsfunktionen. Die Lokalitätsbedingungen stellen Einschränkungen in der Anwendbarkeit des Baukastensystems dar: Systeme mit übergeordneten Steuerungsebenen wie Routenplanung oder Leerfahrzeugsteuerung, die Entscheidungen auf Grund der vorhandenen Transportaufträge und des aktuellen Systemzustands treffen (Fahrerlose Transportsys-teme, Elektrohängebahn), können mit dem Baukasten nicht bearbeitet werden. Diese auf Unstetigförderern basierenden Systeme unterscheiden sich aber auch in ihren Einsatzmerkmalen grundlegend von den hier betrach-teten Stetigförderersystemen. Das Problem der Blockierungen vorgelagerter Bereiche durch zu große Warteschlangen kann dagegen bereits mit dem Baukasten betrachtet und zumindest visualisiert werden. Dazu ist den Verbindungen zwischen den Bausteinen eine Kapazität zugeordnet, so dass durch Vergleich mit den berechneten Warteschlangenlängen eine generelle Einschätzung zur Blockierungsgefahr möglich wird: Ist die Streckenkapazität kleiner als die mittlere Warteschlange, muss von einer permanenten Blockierung ausgegangen werden. In diesem Fall kann der vorhergehende Baustein seine gerade in Bearbeitung befindli-che Transporteinheit nach dem Ende der „Bedienung“ nicht sofort abgeben und behindert damit auch seine weiteren ankommenden Transporteinheiten. Für die Transporteinheiten bedeutet das eine Verlustzeit, die auch nicht wieder aufgeholt werden kann, für das gesamte Transportsystem ist von einer Leistungsminde-rung (geringerer Durchsatz, größere Transport- / Durchlaufzeit) auszugehen. Da bei der Berechnung der Bausteine von einer Blockierfreiheit ausgegangen wird, sind die Berechnungser-gebnisse in aller Regel falsch. Ist die Streckenkapazität zwar größer als die mittlere Warteschlange, aber kleiner als beispielsweise das 90%-Quantil der Warteschlange, ist mit teilweisen Blockierungen (in dem Fall mit mehr als 10% Wahr-scheinlichkeit) zu rechnen. Dann tritt der o.g. Effekt nur zeitweise auf. Die Ergebnisse der Berechungen sind dann zumindest für einzelne Bausteine ungenau. In beiden Fällen wird das Problem erkannt und dem Anwender signalisiert. Es wird davon ausgegangen, dass die geplante Funktionalität und Leistungsfähigkeit des Materialflusssystems nur dann gewährleistet ist, wenn keine Blockierungen auftreten. Durch Änderung der Parameter des kritischen Bausteins, aber auch durch Änderung der Materialströme muss daher eine Anpassung vorgenommen werden. Erst bei Vorliegen der Blockierfreiheit ist die Voraussetzung der Lokalität der Berechnungen erfüllt. Die Berechnungsverfahren in den Bausteinen selbst können wegen der Modularisierung (Lokalität) sehr unter-schiedlicher Art sein. Dabei ist es prinzipiell möglich, die einzelnen Ergebnisse eines Bausteins mit verschiede-nen Verfahren zu ermitteln, insbesondere dann, wenn auf Grund eines eingeschränkten Definitionsbereichs der Eingangsparameter die Anwendung eines bestimmten Verfahrens nicht zulässig ist. Bausteine, die einen Materialfluss auf Grund äußerer, nicht aus dem Verhalten des Bausteins resultierende Einflüsse generieren (Quelle) oder verändern (Service-Station), sind durch eine Flussgröße parametriert. Die Flussgröße ist eine statistische Verteilungsfunktion zur Beschreibung der Ankunfts- und Abgangsströme (Zwi-schenankunftszeiten). In der Praxis, insbesondere in der Planungsphase, ist aber eine solche Verteilungsfunktion meist nicht bekannt. Zudem erweist sich das Rechnen mit Verteilungsfunktionen als numerisch aufwändig. Untersuchungen in [Markwardt2003] haben gezeigt, dass eine Parametrisierung als Abstraktion über statistische Verteilungsfunktionen mit gleichen Erwartungswerten, Minima und Streuungen ausreichend genaue Ergebnisse liefert. Daher wird die Flussgröße beschrieben durch die Parameter Ankunftsrate (=Durchsatz), Mindestzeitabstand tmind und Variationskoeffizient c (als Maß für die Variabilität des Stroms). Zur Visualisierung der Ergebnisse kann die dreiparametrige Gammaverteilung zu Grunde gelegt werden, die eine gute Anpassung an reale Prozessverläufe bietet und durch die genannten Parameter eindeutig beschrieben ist: Weitere leistungsbestimmende Größen wie technische Parameter, Zeitbedarfe u.ä. werden als Parametertupel (k) der jeweiligen Klasse zugeordnet. So ist z.B. bei einer Einschleusung auf einen Sorter zu garantieren, dass der Strom auf der Hauptstrecke nicht angehalten wird. Das erfordert bei einer Einschleusung von der Nebenstrecke eine Lücke im Gutstrom auf der Hauptstrecke mit der Länge Mindestabstand und Fördergeschwindigkeit sind Parameter der ankommenden Förderstrecken, demnach ist lediglich die Größe ttr als Transferzeit ein leistungsbestimmender Parameter der Einschleusung. Förderstrecken stellen die Verbindungen zwischen den Bausteinen her und realisieren den eigentlichen Material-fluss durch das System. Die technische Realisierung kann dabei prinzipiell durch verschiedenartige Bauformen von Stetig- und Unstetigförderern erfolgen. Systeme, die aber vollständig auf der Basis von Unstetigförderern arbeiten wie fahrerlose Transportsysteme (FTS) oder Elektrohängebahn (EHB), werden im Rahmen des Baukas-tens nicht betrachtet, weil die Lokalitätsbedingungen nicht gelten und beispielsweise eine übergeordnete Sys-temsteuerung (Fahrzeugdisposition, Leerfahrtoptimierung) einen erheblichen Einfluss auf die Leistungsfähigkeit des Gesamtsystems hat. Förderstrecken im hier verwendeten Sinne sind Rollen-, Ketten-, Bandförderer oder ähnliches, deren maximaler Durchsatz im Wesentlichen durch zwei Parameter bestimmt wird: Fördergeschwindigkeit (vF) und Mindestab-stand zwischen den Transporteinheiten (smind). Der Mindestabstand ergibt sich aus der Länge der Transportein-heit in Transportrichtung (sx) und einem Sicherheitsabstand (s0), der für ein sicheres und gefahrloses Transportie-ren erforderlich ist. Die Mindestzeit tmind,S zwischen zwei Fördereinheiten auf einer Förderstrecke bestimmt sich demnach zu Ist das verbindende Förderelement nicht staufähig (nicht akkumulierend, z.B. Gurtbandförderer), so kann sich der Abstand zwischen den Fördergütern während des Förder- oder Transportvorgangs nicht verändern: Muss das Band angehalten werden, weil eine Abgabe an das nachfolgende Förderelement nicht möglich ist, bleiben alle Einheiten stehen. In diesem Fall ist es also nicht möglich, die Lücken im Transportstrom zu schließen, die bereits bei der Aufgabe auf das Förderelement entstehen. Für die Berechnung der Mindestzeit tmind,S bedeutet das, dass dann auch die Mindestzeit tmind,B des vorhergehenden Bausteins berücksichtigt werden muss. Die Mindestzeit des Streckenelements nach (6) bzw. (7) wird als einer der Parameter der Flussgröße zur Be-schreibung des am nachfolgenden Baustein ankommenden Stroms verwendet. Als Parameter der Förderstrecke werden neben der Fördergeschwindigkeit daher auch Angaben zum Transportgut (Abmessungen, Sicherheitsab-stand, Transportrichtung) benötigt. Es bot sich ferner an, eine Typisierung der Förderstrecken hinsichtlich ihrer technischen Realisierung (Rollenförderer, Kettenförderer, Bandförderer usw. mit zugeordneten Parametern) vorzunehmen, um den Aufwand für die Beschreibung der Förderstrecken gering zu halten. Weitere Parameter der Förderstrecken dienen der Aufnahme der Berechnungsergebnisse von vor- bzw. nachge-lagerten Bausteinen und beinhalten: die Länge der Warteschlange (einzelne Kenngrößen wie Mittelwert, 90%-, 95% bzw. 99%-Quantil oder - falls ermittelbar - als statistische Verteilung) die Wartezeit (ebenfalls Kenngrößen oder statistische Verteilung) die (Strecken-)Auslastung Variationskoeffizient für den Güterstrom Für die Darstellung des Materialflusses in einem System werden jeweils einzelne Materialfluss-Relationen betrachtet. Dabei wird angenommen, dass jede Relation an einer Quelle beginnt, an einer Senke endet, dabei mehrere Materialfluss-Komponenten (Bausteine) durchläuft und über den gesamten Verlauf in seiner Größe (Transportmenge) konstant bleibt. Einziger leistungsbestimmender Parameter einer Materialfluss-Relation ist die Transportmenge. Sie wird als zeitabhängige Größe angegeben und entspricht damit dem Durchsatz. Mindestabstand und Variationskoeffizient werden vom erzeugenden Baustein (Quelle) bestimmt, von den weiteren durchlaufenen Bausteinen verändert und über die Förderstrecken jeweils an den nachfolgenden Baustein übertragen. Die verbindenden Förderstrecken werden mit dem jeweiligen Durchsatz „belastet“. Bei Verbindungen, die von mehreren Relationen benutzt werden, summieren sich die Durchsätze, so dass sich unterschiedliche Strecken- und Bausteinbelastungen ergeben. Im Kontext des Baukastensystems werden Metadaten1 verwendet, um die in einem Baustein enthaltenen Infor-mationen über Anwendung, Verfahren und Restriktionen transparent zu machen. Ziel des Baukastensystems ist es je gerade, einfache und leicht handhabbare Berechnungsmodule für einen breiteren Anwenderkreis zur Verfü-gung zu stellen. Dazu sind Beschreibungen erforderlich, mit denen das Leistungsspektrum, mögliche Ergebnisse und Anwendungs- bzw. Einsatzkriterien dokumentiert werden. Aufgabe der Baustein-Bibliothek ist die Sammlung, Verwaltung und Bereitstellung von Informationen über die vorhandenen Bausteine. Damit soll dem Nutzer die Möglichkeit gegeben werden, für seine konkret benötigte Materialflusskomponente einen geeigneten Baustein zur Abbildung zu finden. Mit der Entwicklung weiterer Bausteine für ähnliche Funktionen, aber unterschiedliche Realisierungen (z. B. Regalbediengerät: einfach- oder doppeltiefe Lagerung, mit oder ohne Schnellläuferzone usw.) wächst die Notwendigkeit, die Einsatz- und Leis-tungsmerkmale des Bausteins in geeigneter Weise zu präsentieren. Die Baustein-Bibliothek enthält demnach eine formalisierte Beschreibung der vorhandenen und verfügbaren Bausteine. Die Informationen sind im Wesentlichen unter dem Aspekt einer einheitlichen Identifikation, Infor-mation, Visualisierung und Implementierung der unterschiedlichen Bausteine zusammengestellt worden. Einige der in der Baustein-Bibliothek enthaltenen Metadaten lassen sich durchaus mehreren Rubriken zuordnen. Identifikation und Information Ein Baustein wird durch eine eindeutige Ident-Nummer fixiert. Daneben geben Informationen zum Autor (Ent-wicklung und/oder Implementierung des Verfahrens) und eine Funktionsbeschreibung eine verbale Auskunft über den Baustein. Zusätzlich ist jeder Baustein einem bestimmten Typ zugeordnet entsprechend der Baustein-Klassifizierung (Bearbeiten, Verzweigen, Zusammenführen usw.), über den die Baustein-Auswahl eingegrenzt werden kann. Visualisierung Die Parameter für die Visualisierung beschreiben die Darstellung des Bausteins innerhalb des Baukastensystems (Form, Farbe, Lage der Ein- und Ausgänge des Bausteins, Icons). Implementierung Der Klassenname verweist auf die Implementierung des Bausteins. Zusätzlich benötigte Programm-Ressourcen (externe Bibliotheken wie *.dll , *.tcl o.ä.) können angegeben werden. Weiterhin sind Bezeichnungen und Erläuterungen der erforderlichen technischen Parameter für den Eingabedialog enthalten. Für die Förderstrecken wird ebenfalls eine formalisierte Beschreibung verwendet. Sie verweist jedoch nicht wie die Baustein-Bibliothek auf Software-Ressourcen, sondern enthält nur eine Reihe technischer Parameter, die für das Übertragungsverhalten der Förderstrecke eine Rolle spielen (Fördergeschwindigkeit, Arbeitsweise akkumu-lierend, Ausrichtung des Transportguts). Die Einträge lassen sich als Musterdatensätze (Template) für die Bau-stein-Verbindungen auffassen, um bestimmte, häufig vorkommende fördertechnische Lösungen diesen Verbin-dungen in einfacher Weise zuordnen zu können. Die Angaben sind aber im konkreten Anwendungsfall änderbar. Angaben zum Transportgut beschränken sich auf die Abmessungen der Transporteinheiten (Länge, Breite) und den erforderlichen Sicherheitsabstand (s0). Als Grundform wird von einer Standard-Euro-Palette (1200x800 mm) ausgegangen, es lassen sich aber auch Güter mit anderen Maßen hinzufügen. Die Angaben zum Transportgut werden in Verbindung mit den Parametern der Förderstrecken (Ausrichtung des Gutes längs oder quer) ausgewertet, so dass sich die jeweiligen Mindestabstände (Gleichung 6 bzw. 7) sowie der maximale Durchsatz Qmax als Grundlage für die Berechnung der Streckenauslastung bestimmen lassen. Das Gesamtkonzept des Baukastensystems ist in Abbildung 4 dargestellt. Es besteht im Wesentlichen aus drei Bereichen: Bausteinerstellung Bausteinverwaltung (Bibliotheken) Baukasten (Benutzeroberfläche) Dabei ist der Bereich der Bausteinerstellung nicht unmittelbarer Bestandteil der realisierten Lösung. Sie ist vielmehr die Quelle für die Bausteine, die über die jeweiligen Metadaten in einer Baustein-Bibliothek verwaltet und bereitgestellt werden. Die Verwaltung von Bausteinen und Förderstrecken ist die Umsetzung der Baustein-Bibliothek und (im erwei-terten Sinne) der Definitionen für die Förderstrecken. Der Modellbaukasten selbst stellt die Grafische Nutzeroberfläche dar (Abb. 11) und enthält den interaktiven, grafischen Modelleditor, die Auswahlelemente (Werkzeugkoffer bzw. -filter) für Bausteine und Förderstrecken, tabellarische Übersichten für alle Bausteine, Förderstrecken und Materialflussrelationen sowie Eingabedialoge für Bausteine, Förderstrecken und Materialflussrelationen. Die Entwicklung eines Modells mit dem Baukastensystem erfolgt prinzipiell in drei Schritten: Schritt eins umfasst die Anordnung und Definition der Bausteine. Der Modellbaukasten bietet die Möglich-keit, einen bestimmten Baustein direkt (z.B. Ausschleusung) oder unter Nutzung eines Bausteinfilters (z.B. alle Verzweigungselemente) auszuwählen und im grafischen Editor mittels Mausklick zu platzieren . An-schließend erfolgt im Dialog die notwendige Parametrierung des Bausteins. Dies beinhaltet sowohl die An-gaben zur Visualisierung (Drehung, Spiegelung) als auch die für die Dimensionierung erforderlichen techni-schen Parameter. Die für jeden Baustein benötigten Leistungsanforderungen (Durchsatz, lokale Transport-matrix) werden allerdings nicht direkt angegeben, sondern aus den Beziehungen zu den vor- und nachgela-gerten Bausteinen automatisch ermittelt (Übertragungsfunktion der Förderstrecken). Danach erfolgt in einem zweiten Schritt die Definition von Verbindung zwischen den Bausteinen (Förder-strecken): Das Erzeugen der Bausteinverbindungen ist ebenfalls ganz einfach zu realisieren. Nach Auswahl der zu Grunde liegenden Fördertechnik (z.B. Rollenförderer) wird durch Ziehen des Mauszeigers von einem nicht belegten Ausgang zu einem nicht belegten Eingang eines Bausteins die entsprechende Förderstrecke erzeugt. In einem abschließenden Dialog können die gewählten Voreinstellungen zum Transportgut, zum Förderertyp usw. bestätigt oder gegebenenfalls korrigiert werden. Außerdem kann die Kapazität der Förder-strecke definiert werden. Dabei geht es weniger um die Länge des Förderers als viel mehr um die Anzahl der vorgesehenen Puffer- oder Stauplätze im Zusammenhang mit den zu berechnenden Warteschlangenlän-gen. Abschließend wird im dritten Schritt der Materialfluss definiert: Ein Materialstrom ist jeweils eine Relation, die an einer Quelle beginnt, an einer Senke endet und dabei mehrere Bausteine durchläuft. Da die Förder-strecken zu diesem Zeitpunkt bereits definiert sein müssen, kann automatisch ein möglicher Weg zwischen Quelle und Senke gefunden werden. Ähnlich wie bei Routenplanungssystemen kann dabei durch zusätzliche Angabe von Zwischenpunkten (via) der automatisch vorgeschlagene Transportweg verändert und angepasst werden (Abb. 5). Nach Bestätigung des Transportweges und damit der unterwegs zu passierenden Bausteine erfolgt in einem Dialog die Parametrierung (Transportmenge pro Stunde) für diese Relation. Die Elemente des Transportweges (die benutzten Förderstrecken) werden mit dem entsprechenden Durchsatz „belastet“. Nach Abschluss der Modellierung kann die Berechnung ausgeführt werden. Im Ergebnis werden Kennzahlen bestimmt und im Baukasten in verschiedener Form visualisiert, um eine Bewertung der Ergebnisse vornehmen zu können. Eine Übersicht Fehlermeldungen listet die Problemelemente auf. Dabei wird die Schwere eines Problems farb-lich hervorgehoben: fataler Fehler (rot): entsteht z.B. bei Überlastung eines Bausteins – die geforderte Leistung für einen Bau-stein (und damit die des Gesamtsystems) kann nicht erbracht werden. lokaler Fehler (orange): entsteht z.B. bei permanenter Blockierung – die mittlere Warteschlange vor einem Baustein ist größer als dessen vorgesehene Kapazität. Warnung (hellgelb): bei teilweiser Blockierung – das 90%-Quantil der Warteschlange ist größer als die Ka-pazität der Förderstrecke, es ist daher zeitweise mit Blockierungen (und damit Behinderungen des vorherge-henden Bausteins) zu rechnen. Information (weiß): wird immer dann erzeugt, wenn Erwartungswerte für die Wartezeit oder Warteschlange mit einem G/G/1-Bedienmodell berechnet werden. Die Lösungen dieser Näherungsgleichungen sind im All-gemeinen nicht sehr genau, dienen aber als Abschätzung für die sonst fehlenden Kennwerte. Entsprechend der berechneten Auslastung werden die Bausteine im Modelleditor mit einer Farbabstufung von Grün nach Rot markiert, Bausteine und Förderstrecken leuchten rot bei Überlastung. Die dargestellten Ergebnisse im Modelleditor zu Bausteinen und Förderstrecken sind umschaltbar durch den Nutzer (Abb. 6). Je nach den in den Bausteinen hinterlegten Berechnungen sind jedoch nicht immer alle Kenn-größen verfügbar. Die Implementierung des Baukastensystems wurde mit Java (Release 1.5) vorgenommen. Für das Kernsystem wird dabei das in Abbildung 7 dargestellte Klassen-Konzept umgesetzt. Ausgehend von einer allgemeinen Klasse (Object3D) für Visualisierung von und Interaktionen mit grafischen Objekten wurden für Bausteine (AbstractNode) und Förderstrecken (Connection) die jeweiligen Klassen abgelei-tet. Für die Förderstecken ergibt sich dabei eine weitgehend einheitliche Beschreibungsform, die lediglich durch die Parametrierung (Vorlagen in der Förderstrecken-Bibliothek als XML-Datei) auf den konkreten Einsatz im Modell des Materialflusssystems angepasst werden muss. Anders verhält es sich mit den Bausteinen: Durch die mögliche Vielfalt von Bausteinen und den ihnen zu Grunde liegenden Berechnungsverfahren muss es auch eine Vielzahl von Klassen geben. Um jedoch für jeden belie-bigen Baustein den Zugriff (Bereitstellung von Eingangsdaten, Berechnung und Bereitstellung der Ergebnisse) in einer identischen Weise zu gewährleisten, muss es dafür eine nach außen einheitliche Schnittstelle geben. Die Java zu Grunde liegende objektorientierte Programmierung bietet mit dem Konzept der „abstrakten Klasse“ eine Möglichkeit, dies in einfacher Weise zu realisieren. Dazu wird mit AbstractNode quasi eine Vorlage entwi-ckelt, von der alle implementierten Baustein-Klassen abgeleitet sind. AbstractNode selbst enthält alle Methoden, mit denen Baustein-Daten übernommen oder übergeben, die jeweiligen Visualisierungen vorgenommen, die baustein-internen Verbindungen (lokale Transportmatrix) verwaltet und Ein- und Ausgänge mit den zugehörigen Förderstrecken verbunden werden. Die für den Aufruf der eigentlichen Berechnungen in den Bausteinen ver-wendeten Methoden sind deklariert, aber nicht implementiert (sogenannte abstrakte Methoden). Ein Baustein wird von AbstractNode abgeleitet und erbt damit die implementierten Methoden, lediglich die abstrakten Methoden, die die Spezifik des Bausteins ausmachen, sind noch zu implementieren. Um neue Bausteine zu erzeugen, wird Unterstützung in Form eines Bildschirmdialogs angeboten (Abb. 8). Danach sind die entsprechenden Angaben zu den Metadaten, zur Struktur und zur Visualisierung des Bausteins, die Eingangsparameter (Name und Erläuterung) sowie die berechenbaren Ergebnisse (z.B. Auslastung, Quantile der Warteschlangenlänge, aber keine Aussage zu Wartezeiten usw.) anzugeben. Nach Bestätigung der Daten und diversen Syntax- bzw. Semantik-Kontrollen wird der Baustein in der Bibliothek registriert, ein Sourcecode für den neuen Baustein generiert und kompiliert. Der Baustein selbst ist damit formal korrekt und kann sofort verwendet werden, liefert aber noch keine verwertbaren Ergebnisse, weil natürlich die Implementierung des Berechnungsverfahrens selbst noch aussteht. Das muss in einem zweiten Schritt im Rah-men der üblichen Software-Entwicklung nachgeholt werden. Dazu sind die Berechnungsverfahren zu implemen-tieren und die Bausteinschnittstellen zu bedienen. Der generierte Java-Code enthält in den Kommentaren eine Reihe von Hinweisen für den Programmierer, so dass sich problemlos die Schnittstellen des Bausteins program-mieren lassen (Abb. 9). In einem Beispiel werden ein Hochregallager (3 Regalbediengeräte) und zwei Kommissionierplätze durch ein Transportsystem verbunden. Mit der Einlastung von Kommissionieraufträgen werden im Simulationsmodell die entsprechenden Transportaufträge generiert und abgearbeitet (Abb. 10). Dabei können Systemzustände (z.B. Warteschlangen) protokolliert und statistisch ausgewertet werden. Ein entsprechendes Modell für den Baukasten ist in Abbildung 11 dargestellt. Der Vorteil des Baukastensystems liegt selbst bei diesem recht einfachen Beispiel im Zeitvorteil: Für Erstellung und Test des Simulationsmodells und anschließende Simulationsläufe und Auswertungen wird ein Zeitaufwand von ca. 4-5 Stunden benötigt, das Baukastenmodell braucht für Erstellung und korrekte Parametrierung weniger als 0,5 Stunden, die Rechenzeit selbst ist vernachlässigbar gering. Sollte im Ergebnis der Untersuchungen eine Änderung des Materialflusssystems notwendig werden, so führt das im Simulationsmodell teilweise zu erheblichen Änderungen (Abläufe, Steuerungsstrategien, Auswertungen) mit entsprechendem Zeitaufwand. Im Baukasten können dagegen in einfacher Weise zusätzliche Bausteine eingefügt oder vorhandene ersetzt werden durch Bausteine mit geänderter Funktion oder Steuerung. Strukturelle Änderungen am Materialflusssys-tem sind also mit deutlich geringerem Aufwand realisierbar. In [Markwardt2003] werden für mehrere Strukturen von Materialflusskomponenten Fehlerbetrachtungen über die Genauigkeit der mittels neuronaler Netze untersuchten Systeme gegenüber den Simulationsergebnissen vorge-nommen. Danach ergibt sich beispielsweise für das 90%-Quantil der Warteschlange eine Abweichung, die mit 90% Sicherheit kleiner als 0,3 Warteplätze ist. Bei den Variationskoeffizienten des Abgangsstroms betragen die absoluten Abweichungen mit 90% Sicherheit nicht mehr als 0,02 bis 0,05 (in Abhängigkeit vom betrachteten Baustein). Daraus wird die Schlussfolgerung abgeleitet, dass die durch Verknüpfung neuronaler Netze gewonne-nen Aussagen sehr gut mit statistischen Ergebnissen diskreter Simulation übereinstimmen und eine Planungssi-cherheit ermöglichen, die für einen Grobentwurf von Materialflusssystemen weit über die heute gebräuchlichen statischen Berechnungsverfahren hinausgehen. Im konkreten Beispiel wurde die Zahl der Pufferplätze vor den Kommissionierern (Work1 bzw. Work2) zu-nächst auf 3 begrenzt. Die Berechnung im Baukasten ergab dabei in beiden Fällen Fehlermeldungen mit dem Hinweis auf Blockierungen (Abb. 12, links). Diese bestätigten sich auch im Simulationsmodell (Abb. 12, rechts). Nach Vergr��ßerung der Pufferstrecken auf 7 Plätze ist die Blockierungsgefahr auf ein vertretbares Minimum reduziert, und die mit dem Baukasten berechneten Kenngrößen können durch die Simulation prinzipiell bestätigt werden. it dem offenen Baukastensystem ist eine schnelle, einfache, sichere und damit wirtschaftlichere Dimensionie-rung von Materialflusssystemen möglich. Für den Anwender sind sofort statistisch abgesicherte und ausreichend genaue Ergebnisse ohne aufwändige Berechnungen verfügbar, womit sich die Planungsqualität erhöht. Besonde-re Anforderungen an Hard- und Software sind dabei nicht erforderlich. Für die Dimensionierung der einzelnen Bausteine stehen Informationen aus der Bedienungstheorie, Simulati-onswissen und numerische Verfahren direkt und anwendungsbereit zur Verfügung. Es erlaubt eine deutlich vereinfachte Berechnung von statistischen Kenngrößen wie Quantile (statistische Obergrenzen) der Pufferbelegung, Auslastung von Einzelelementen und mittlere Auftragsdurchlaufzeit bei gleichzeitig erhöhter Genauigkeit. Ferner ist das Baukastensystem offen für eine Erweiterung um neue Bausteine, die neue oder spezielle fördertechnische Elemente abbilden oder zusätzliche Informationen liefern können. Da auch komplexe Materialflusssysteme immer wieder aus einer begrenzten Anzahl unterschiedlicher Kompo-nenten bestehen, können durch die Verknüpfung der Einzelbausteine auch Gesamtsysteme abgebildet werden. Die Verknüpfung der Bausteine über eine einheitliche Schnittstelle erlaubt Aussagen über das Verhalten der Gesamtanlage. Bei Einsatz des Baukastensystems sind in einer solchen Verknüpfung jederzeit Parameterände-rungen möglich, deren Folgen sofort sichtbar werden. Die Zeit bis zum Vorliegen gesicherter, ausreichend genauer Ergebnisse wird dadurch drastisch verkürzt. Damit erwächst Variantenuntersuchungen bereits in frühen Planungsphasen neues Potential und kann zum entscheidenden Wettbewerbsvorteil werden.