993 resultados para Aircraft gas-turbines
Resumo:
In this paper, we fabricated Pt/tantalum oxide (Ta2O5) Schottky diodes for hydrogen sensing applications. Thin (4 nm) layer of Ta2O5 was deposited on silicon (Si) and silicon carbide (SiC) substrates by radio frequency (RF) sputtering technique. We compared the performance of these sensors at different elevated temperatures of 100 ∘C and 150 ∘C. At these temperatures, the sensor based on SiC exhibited a larger sensitivity while the sensor based on Si exhibited a faster response toward hydrogen gas. We discussed herein, the responses exhibited by the Pt/Ta2O5 based Schottky diodes demonstrated a promising potential for hydrogen sensing applications.
Resumo:
In this work, we present the development of a Pt/graphene/SiC device for hydrogen gas sensing. A single layer of graphene was deposited on 6H-SiC via chemical vapor deposition. The presence of graphene C-C bonds was observed via X-ray photoelectron spectroscopy analysis. Current-voltage characteristics of the device were measured at the presence of hydrogen at different temperatures, from 25°C to 170°C. The dynamic response of the device was recorded towards hydrogen gas at an optimum temperature of 130°C. A voltage shift of 191 mV was recorded towards 1% hydrogen at −1 mA constant current.
Resumo:
Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.
Resumo:
The current regulatory approach to coal seam gas projects in Queensland is based on the philosophy of adaptive environmental management. This method of “learning by doing” is implemented in Queensland primarily through the imposition of layered monitoring and reporting duties on the coal seam gas operator alongside obligations to compensate and “make good” harm caused. The purpose of this article is to provide a critical review of the Queensland regulatory approach to the approval and minimisation of adverse impacts from coal seam gas activities. Following an overview of the hallmarks of an effective adaptive management approach, this article begins by addressing the mosaic of approval processes and impact assessment regimes that may apply to coal seam gas projects. This includes recent Strategic Cropping Land reforms. This article then turns to consider the preconditions for land access in Queensland and the emerging issues for landholders relating to the negotiation of access and compensation agreements. This article then undertakes a critical review of the environmental duties imposed on coal seam gas operators relating to hydraulic fracturing, well head leaks, groundwater management and the disposal and beneficial use of produced water. Finally, conclusions are drawn regarding the overall effectiveness of the Queensland framework and the lessons that may be drawn from Queensland’s adaptive environmental management approach.
Resumo:
The Australian Federal Commissioner of Taxation recently released Draft Taxation Ruling TR 2008/D3 with the stated purpose of clarifying ‘what profits derived from the leasing of ships or aircraft fall within the ship and aircraft articles of each of Australia’s tax treaties’. In particular, TR 2008/D3 explains the taxing rights over different types of leasing profits, such as a full basis lease in respect of any transport by a ship operated in international traffic and bareboat leases which are ancillary to the lessor transport operations of ships in international traffic. This article outlines the Commissioner’s views on the application of the standard ships and aircraft articles in the tax treaties to which it is a party as well as considering the major variations on the standard adoption. In doing so, guidance is provided as to the allocation of taxing rights of ship and aircraft leasing profits under Australia’s tax treaties.
Resumo:
Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO2 produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO2 down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO2 compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO2 target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.
Resumo:
This study reports on the gas sensing characteristics of Fe-doped (10 at.%) tungsten oxide thin films of various thicknesses (100–500 nm) prepared by electron beam evaporation. The performance of these films in sensing four gases (H2, NH3, NO2 and N2O) in the concentration range 2–10,000 ppm at operating temperatures of 150–280 °C has been investigated. The results are compared with the sensing performance of a pure WO3 film of thickness 300 nm produced by the same method. Doping of the tungsten oxide film with 10 at.% Fe significantly increases the base conductance of the pure film but decreases the gas sensing response. The maximum response measured in this experiment, represented by the relative change in resistance when exposed to a gas, was ΔR/R = 375. This was the response amplitude measured in the presence of 5 ppm NO2 at an operating temperature of 250 °C using a 400 nm thick WO3:Fe film. This value is slightly lower than the corresponding result obtained using the pure WO3 film (ΔR/R = 450). However it was noted that the WO3:Fe sensor is highly selective to NO2, exhibiting a much higher response to NO2 compared to the other gases. The high performance of the sensors to NO2 was attributed to the small grain size and high porosity of the films, which was obtained through e-beam evaporation and post-deposition heat treatment of the films at 300 °C for 1 h in air.
Resumo:
The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.
Resumo:
This paper presents a survey of previously presented vision based aircraft detection flight test, and then presents new flight test results examining the impact of camera field-of view choice on the detection range and false alarm rate characteristics of a vision-based aircraft detection technique. Using data collected from approaching aircraft, we examine the impact of camera fieldof-view choice and confirm that, when aiming for similar levels of detection confidence, an improvement in detection range can be obtained by choosing a smaller effective field-of-view (in terms of degrees per pixel).
Resumo:
This study examined the potential for Fe mobilization and greenhouse gas (GHG, e.g. CO2, and CH4) evolution in SEQ soils associated with a range of plantation forestry practices and water-logged conditions. Intact, 30-cm-deep soil cores collected from representative sites were saturated and incubated for 35 days in the laboratory, with leachate and headspace gas samples periodically collected. Minimal Fe dissolution was observed in well-drained sand soils associated with mature, first-rotation Pinus and organic Fe complexation, whereas progressive Fe dissolution occurred over 14 days in clear-felled and replanted Pinus soils with low organic matter and non-crystalline Fe fractions. Both CO2 and CH4 effluxes were relatively lower in clear-felled and replanted soils compared with mature, first-rotation Pinus soils, despite the lack of statistically significant variations in total GHG effluxes associated with different forestry practices. Fe dissolution and GHG evolution in low-lying, water-logged soils adjacent to riparian and estuarine, native-vegetation buffer zones were impacted by mineral and physical soil properties. Highest levels of dissolved Fe and GHG effluxes resulted from saturation of riparian loam soils with high Fe and clay content, as well as abundant organic material and Fe-metabolizing bacteria. Results indicate Pinus forestry practices such as clear-felling and replanting may elevate Fe mobilization while decreasing CO2 and CH4 emissions from well-drained, SEQ plantation soils upon heavy flooding. Prolonged water-logging accelerates bacterially mediated Fe cycling in low-lying, clay-rich soils, leading to substantial Fe dissolution, organic matter mineralization, and CH4 production in riparian native-vegetation buffer zones.
Resumo:
Unmanned Aircraft Systems (UAS) describe a diverse range of aircraft that are operated without a human pilot on-board. Unmanned aircraft range from small rotorcraft, which can fit in the palm of your hand, through to fixed wing aircraft comparable in size to that of a commercial passenger jet. The absence of a pilot on-board allows these aircraft to be developed with unique performance capabilities facilitating a wide range of applications in surveillance, environmental management, agriculture, defence, and search and rescue. However, regulations relating to the safe design and operation of UAS first need to be developed before the many potential benefits from these applications can be realised. According to the International Civil Aviation Organization (ICAO), a Risk Management Process (RMP) should support all civil aviation policy and rulemaking activities (ICAO 2009). The RMP is described in International standard, ISO 31000:2009 (ISO, 2009a). This standard is intentionally generic and high-level, providing limited guidance on how it can be effectively applied to complex socio-technical decision problems such as the development of regulations for UAS. Through the application of principles and tools drawn from systems philosophy and systems engineering, this thesis explores how the RMP can be effectively applied to support the development of safety regulations for UAS. A sound systems-theoretic foundation for the RMP is presented in this thesis. Using the case-study scenario of a UAS operation over an inhabited area and through the novel application of principles drawn from general systems modelling philosophy, a consolidated framework of the definitions of the concepts of: safe, risk and hazard is made. The framework is novel in that it facilitates the representation of broader subjective factors in an assessment of the safety of a system; describes the issues associated with the specification of a system-boundary; makes explicit the hierarchical nature of the relationship between the concepts and the subsequent constraints that exist between them; and can be evaluated using a range of analytic or deliberative modelling techniques. Following the general sequence of the RMP, the thesis explores the issues associated with the quantified specification of safety criteria for UAS. A novel risk analysis tool is presented. In contrast to existing risk tools, the analysis tool presented in this thesis quantifiably characterises both the societal and individual risk of UAS operations as a function of the flight path of the aircraft. A novel structuring of the risk evaluation and risk treatment decision processes is then proposed. The structuring is achieved through the application of the Decision Support Problem Technique; a modelling approach that has been previously used to effectively model complex engineering design processes and to support decision-making in relation to airspace design. The final contribution made by this thesis is in the development of an airworthiness regulatory framework for civil UAS. A novel "airworthiness certification matrix" is proposed as a basis for the definition of UAS "Part 21" regulations. The outcome airworthiness certification matrix provides a flexible, systematic and justifiable method for promulgating airworthiness regulations for UAS. In addition, an approach for deriving "Part 1309" regulations for UAS is presented. In contrast to existing approaches, the approach presented in this thesis facilitates a traceable and objective tailoring of system-level reliability requirements across the diverse range of UAS operations. The significance of the research contained in this thesis is clearly demonstrated by its practical real world outcomes. Industry regulatory development groups and the Civil Aviation Safety Authority have endorsed the proposed airworthiness certification matrix. The risk models have also been used to support research undertaken by the Australian Department of Defence. Ultimately, it is hoped that the outcomes from this research will play a significant part in the shaping of regulations for civil UAS, here in Australia and around the world.
Resumo:
Unmanned Aircraft Systems (UAS) are one of a number of emerging aviation sectors. Such new aviation concepts present a significant challenge to National Aviation Authorities (NAAs) charged with ensuring the safety of their operation within the existing airspace system. There is significant heritage in the existing body of aviation safety regulations for Conventionally Piloted Aircraft (CPA). It can be argued that the promulgation of these regulations has delivered a level of safety tolerable to society, thus justifying the “default position” of applying these same standards, regulations and regulatory structures to emerging aviation concepts such as UAS. An example of this is the proposed “1309” regulation for UAS, which is based on the 1309 regulation for CPA. However, the absence of a pilot on-board an unmanned aircraft creates a fundamentally different risk paradigm to that of CPA. An appreciation of these differences is essential to the justification of the “default position” and in turn, to ensure the development of effective safety standards and regulations for UAS. This paper explores the suitability of the proposed “1309” regulation for UAS. A detailed review of the proposed regulation is provided and a number of key assumptions are identified and discussed. A high-level model characterising the expected number of third party fatalities on the ground is then used to determine the impact of these assumptions. The results clearly show that the “one size fits all” approach to the definition of 1309 regulations for UAS, which mandates equipment design and installation requirements independent of where the UAS is to be operated, will not lead to an effective management of the risks.
Resumo:
The Kyoto Protocol recognises trees as a sink of carbon and a valid means to offset greenhouse gas emissions and meet internationally agreed emissions targets. This study details biological carbon sequestration rates for common plantation species Araucaria cunninghamii (hoop pine), Eucalyptus cloeziana, Eucalyptus argophloia, Pinus elliottii and Pinus caribaea var hondurensis and individual land areas required in north-eastern Australia to offset greenhouse gas emissions of 1000tCO 2e. The 3PG simulation model was used to predict above and below-ground estimates of biomass carbon for a range of soil productivity conditions for six representative locations in agricultural regions of north-eastern Australia. The total area required to offset 1000tCO 2e ranges from 1ha of E. cloeziana under high productivity conditions in coastal North Queensland to 45ha of hoop pine in low productivity conditions of inland Central Queensland. These areas must remain planted for a minimum of 30years to meet the offset of 1000tCO 2e.
Resumo:
This work focuses on the development of a stand-alone gas nanosensor node, powered by solar energy to track concentration of polluted gases such as NO2, N2O, and NH3. Gas sensor networks have been widely developed over recent years, but the rise of nanotechnology is allowing the creation of a new range of gas sensors [1] with higher performance, smaller size and an inexpensive manufacturing process. This work has created a gas nanosensor node prototype to evaluate future field performance of this new generation of sensors. The sensor node has four main parts: (i) solar cells; (ii) control electronics; (iii) gas sensor and sensor board interface [2-4]; and (iv) data transmission. The station is remotely monitored through wired (ethernet cable) or wireless connection (radio transmitter) [5, 6] in order to evaluate, in real time, the performance of the solar cells and sensor node under different weather conditions. The energy source of the node is a module of polycrystalline silicon solar cells with 410cm2 of active surface. The prototype is equipped with a Resistance-To-Period circuit [2-4] to measure the wide range of resistances (KΩ to GΩ) from the sensor in a simple and accurate way. The system shows high performance on (i) managing the energy from the solar panel, (ii) powering the system load and (iii) recharging the battery. The results show that the prototype is suitable to work with any kind of resistive gas nanosensor and provide useful data for future nanosensor networks.