949 resultados para ANPSP control model
Hybrid model predictive control applied to switching control of burner load for a compact marine boi
Resumo:
This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for which the optimal solution is a limit cycle. Regarding the marine boiler control the aim is to find an optimal control strategy which minimizes a trade-off between deviations in boiler pressure and water level from their respective setpoints while limiting burner switches.The approach taken is based on the Mixed Logic Dynamical framework. The whole boiler systems is modelled in this framework and a model predictive controller is designed. However to facilitate on-line implementation only a small part of the search tree in the mixed integer optimization is evaluated to find out whether a switch should occur or not. The strategy is verified on a simulation model of the compact marine boiler for control of low/high burner load switches. It is shown that even though performance is adequate for some disturbance levels it becomes deteriorated when the optimal solution is a limit cycle. Copyright © 2007 International Federation of Automatic Control All Rights Reserved.
Resumo:
Model Predictive Control (MPC) is increasingly being proposed for application to miniaturized devices, fast and/or embedded systems. A major obstacle to this is its computation time requirement. Continuing our previous studies of implementing constrained MPC on Field Programmable Gate Arrays (FPGA), this paper begins to exploit the possibilities of parallel computation, with the aim of speeding up the MPC implementation. Simulation studies on a realistic example show that it is possible to implement constrained MPC on an FPGA chip with a 25MHz clock and achieve MPC implementation rates comparable to those achievable on a Pentium 3.0 GHz PC. Copyright © 2007 International Federation of Automatic Control All Rights Reserved.
Resumo:
Most academic control schemes for MIMO systems assume all the control variables are updated simultaneously. MPC outperforms other control strategies through its ability to deal with constraints. This requires on-line optimization, hence computational complexity can become an issue when applying MPC to complex systems with fast response times. The multiplexed MPC scheme described in this paper solves the MPC problem for each subsystem sequentially, and updates subsystem controls as soon as the solution is available, thus distributing the control moves over a complete update cycle. The resulting computational speed-up allows faster response to disturbances, and hence improved performance, despite finding sub-optimal solutions to the original problem. The multiplexed MPC scheme is also closer to industrial practice in many cases. This paper presents initial stability results for two variants of multiplexed MPC, and illustrates the performance benefit by an example. Copyright copy; 2005 IFAC. Copyright © 2005 IFAC.
Resumo:
Active control has been shown as a feasible technology for suppressing thermoacoustic instability in continuous combustion systems, and the control strategy design is substantially dependent on the reliability of the flame model. In this paper, refinement of G-equation flame model for the dynamics of lean premixed combustion is investigated. Precisely, the dynamics between the flame speed S_u and equivalence ratio phi are proposed based on numerical calculations and physical explanations. Finally, the developed model is tested on one set of experimental data.
Resumo:
This paper proposes a form of MPC in which the control variables are moved asynchronously. This contrasts with most MIMO control schemes, which assume that all variables are updated simultaneously. MPC outperforms other control strategies through its ability to deal with constraints. This requires on-line optimization, hence computational complexity can become an issue when applying MPC to complex systems with fast response times. The Multiplexed MPC (MMPC) scheme described in this paper solves the MPC problem for each subsystem sequentially, and updates subsystem controls as soon as the solution is available, thus distributing the control moves over a complete update cycle. The resulting computational speed-up allows faster response to disturbances, which may result in improved performance, despite finding sub-optimal solutions to the original problem. This paper describes nominal and robust MMPC, states some stability results, and demonstrates the effectiveness of MMPC through two examples. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper aims to solve the fault tolerant control problem of a wind turbine benchmark. A hierarchical controller with model predictive pre-compensators, a global model predictive controller and a supervisory controller is proposed. In the model predictive pre-compensator, an extended Kalman Filter is designed to estimate the system states and various fault parameters. Based on the estimation, a group of model predictive controllers are designed to compensate the fault effects for each component of the wind turbine. The global MPC is used to schedule the operation of the components and exploit potential system-level redundancies. Extensive simulations of various fault conditions show that the proposed controller has small transients when faults occur and uses smoother and smaller generator torque and pitch angle inputs than the default controller. This paper shows that MPC can be a good candidate for fault tolerant controllers, especially the one with an adaptive internal model combined with a parameter estimation and update mechanism, such as an extended Kalman Filter. © 2012 IFAC.
Resumo:
In Multiplexed MPC, the control variables of a MIMO plant are moved asynchronously, following a pre-planned periodic sequence. The advantage of Multiplexed MPC lies in its reduced computational complexity, leading to faster response to disturbances, which may result in improved performance, despite finding sub-optimal solution to the original problem. This paper extends the original Multiplexed MPC in a way such that the control inputs are no longer restricted to a pre-planned periodic sequence. Instead, the most appropriate control input channel would be optimised and selected to counter the disturbances, hence the name 'Channel-Hopping'. In addition, the proposed algorithm is suitable for execution on modern computing platforms such as FPGA or GPU, exploits multi-core, parallel and pipeline computing techniques. The algorithm for the proposed Channel-hopping MPC (CH-MPC) will be described and its stability established. Illustrative examples are given to demonstrate the behaviour of the proposed Channel-Hopping MPC algorithm. © 2011 IFAC.
Resumo:
The Lateral Leg Spring model (LLS) was developed by Schmitt and Holmes to model the horizontal-plane dynamics of a running cockroach. The model captures several salient features of real insect locomotion, and demonstrates that horizontal plane locomotion can be passively stabilized by a well-tuned mechanical system, thus requiring minimal neural reflexes. We propose two enhancements to the LLS model. First, we derive the dynamical equations for a more flexible placement of the center of pressure (COP), which enables the model to capture the phase relationship between the body orientation and center-of-mass (COM) heading in a simpler manner than previously possible. Second, we propose a reduced LLS "plant model" and biologically inspired control law that enables the model to follow along a virtual wall, much like antenna-based wall following in cockroaches. © 2006 Springer.
Resumo:
Model predictive control allows systematic handling of physical and operational constraints through the use of constrained optimisation. It has also been shown to successfully exploit plant redundancy to maintain a level of control in scenarios when faults are present. Unfortunately, the computational complexity of each individual iteration of the algorithm to solve the optimisation problem scales cubically with the number of plant inputs, so the computational demands are high for large MIMO plants. Multiplexed MPC only calculates changes in a subset of the plant inputs at each sampling instant, thus reducing the complexity of the optimisation. This paper demonstrates the application of multiplexed model predictive control to a large transport airliner in a nominal and a contingency scenario. The performance is compared to that obtained with a conventional synchronous model predictive controller, designed using an equivalent cost function. © 2012 AACC American Automatic Control Council).
Resumo:
This paper develops a technique for improving the region of attraction of a robust variable horizon model predictive controller. It considers a constrained discrete-time linear system acted upon by a bounded, but unknown time-varying state disturbance. Using constraint tightening for robustness, it is shown how the tightening policy, parameterised as direct feedback on the disturbance, can be optimised to increase the volume of an inner approximation to the controller's true region of attraction. Numerical examples demonstrate the benefits of the policy in increasing region of attraction volume and decreasing the maximum prediction horizon length. © 2012 IEEE.