933 resultados para sequencing batch reactors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Most hereditary hemochromatosis (HH) patients are homozygous for the p. C282Y mutation in the HFE gene. Some studies reported that HH phenotypic expression could be modulated by genetic factors such as HJV and HAMP gene mutations. Aims: The aims of this study were to identify HJV and HAMP mutations and to analyze their impact on HH phenotype in non-p. C282Y homozygous individuals. Methods: Twenty-four Brazilian patients with primary iron overload and non-p. C282Y homozygous genotype (transferrin saturation >50% in women and >60% in men and absence of secondary causes) were selected. Subsequent bidirectional sequencing of the HJV and HAMP exons was performed. Results: Sequencing revealed a substitution in heterozygosis, c. 929C>G, which corresponds to p.A310G polymorphism in HJV exon 4 (rs7540883). In the same gene, in another individual, an IVS1-36C>G intronic variant was detected in heterozygosis. In the HAMP gene, an IVS3 + 42G>A intronic variant was identified. There were six (25.0%) patients carrying a heterozygous genotype for the HFE p. C282Y and nine (37.5%) patients carrying a heterozygous genotype for the HFE p. H63D. Conclusion: HJV p.A310G polymorphism and two intronic variants were found, but none of these alterations were associated with digenic inheritance with the HFE gene. Our data indicate that HJV and HAMP functional mutations are not frequent in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work demonstrated that a mixture of NH(4)Cl and KNO(3) as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH(4))(2)SO(4) plus NaNO(3), varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO(2) addition or not. A. platensis was cultivated in mini-tanks at 30 degrees C, 156 mu mol photons m(-2) s(-1), and starting cell concentration of 400 mg L(-1), on a modified Schlosser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L(-1), cell productivity of 179 mg L(-1) d(-1) and specific growth rate of 0.77 d(-1)) and satisfactory protein and lipid contents (around 30% each). (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arthrospira platensis was cultivated in tubular photobioreactor using different photosynthetic photon flux densities (PPFD) and protocols of (NH(4))(2)SO(4) fed-hatch supply. Results were evaluated by variance analysis selecting maximum cell concentration (X(m)), cell productivity (P(x)), nitrogen-to-cell conversion factor (Y(X/N)) and biomass, protein and lipid contents as responses. At PPFD of 120 and 240 mu mol-photons/m(2) s, a parabolic profile of (NH(4))(2)SO(4) addition aiming at producing biomass with 7% nitrogen content ensured X(m) values (14.1 and 12.2 g/L, respectively) comparable to those obtained with NaNO(3). At PPFD of 240 mu mol-photons/m(2) s, P(x) (1.69 g/Ld) was 36% higher, although the photosynthetic efficiency (3.0%) was less than one-half that at PPFD of 120 mu mol-photons/m(2) s. Biomass was shown to be constituted by about 35% proteins and 10% lipids, without any dependence on PPFD or kind of nitrogen source. These results highlight the possible use of (NH(4))(2)SO(4) as alternative, cheap nitrogen source for A. platensis cultivation in tubular photobioreactors. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 26: 1271-1277, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arthrospira platensis was cultivated in minitanks at 13 klux, using a mixture of KNO(3) and NH(4)Cl as nitrogen source. Fed-batch daily supply of NH(4)Cl at exponentially-increasing feeding rate allowed preventing ammonia toxicity and nitrogen deficiency, providing high maximum cell concentration (X(m)) and high-quality biomass (21.85 mg chlorophyll g cells(-1); 20.5% lipids; 49.8% proteins). A central composite design combined to response surface methodology was utilized to determine the relationships between responses (X(m), cell productivity and nitrogen-to-cell conversion factor) and independent variables (KNO(3) and NH(4)Cl concentrations). Under optimum conditions (15.5 mM KNO3; 14.1 mM NH(4)Cl), X(m) was 4327 mg L(-1), a value almost coincident with that obtained with only 25.4 mM KNO(3), but more than twice that obtained with 21.5 mM NH(4)Cl. A 30%-reduction of culture medium cost can be estimated when compared to KNO(3)-batch runs, thus behaving as a cheap alternative for the commercial production of this cyanobacterium. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PEGylation is one of the most promising and extensively studied strategies for improving the pharmacological properties of proteins as well as their physical and thermal stability. Purified lysozyme obtained from hen egg white by batch mode was modified by PEGylation with methoxypolyethyleneglycol succinimidyl succinato (mPEG-SS, MW 5000). The conjugates produced retained full enzyme activity with the substrate glycol chitosan, independent of degree of enzyme modification, although lysozyme activity with the substrate Micrococcus lysodeikticus was altered according to the degree of modification. The conjugate with a low degree of modification by mPEG-SS retained 67% of its enzyme activity with the M. lysodeikticus substrate. The mPEG-SS was also shown to be a highly reactive polymer. The effects of pH and temperature on PEGylated lysozymes indicated that the conjugate was active over a wide pH range and was stable up to 50 degrees C. This conjugate also showed resistance to proteolytic degradation, remained stable in human serum, and displayed greater antimicrobial activity than native lysozyme against Gram-negative bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study deals with the effects of the initial nitrogen source (NZ Case TT) level and the protocol of glucose addition during the fed-batch production of tetanus toxin by Clostridium tetani. An increase in the initial concentration of NZ Case TT (NZ(0)) accelerated cell growth, increased the consumption of the nitrogen source as well as the final yield of tetanus toxin, which achieved the highest values (50-60 L(f)/mL) for NZ(0) > 50 g/L. The addition of glucose at fixed times (16, 56, and 88 h) ensured a toxin yield (similar to 60 L(f)/mL) about 33% higher than those of fed-batch runs with addition at fixed concentration (similar to 45 L(f)/mL) and about 300% higher than those obtained in reference batch runs nowadays used at industrial,scale. The results of this work promise to substantially improve the present production of tetanus toxin and may be adopted for human vaccine production after detoxification and purification. (C) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 26: 88-92, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arthospira (Spirulina) platensis (Nordstedt) Gomont was autotrophically cultivated for biomass production in repeated fed-batch process using urea as nitrogen source, with the aim of making large-scale production easier, increasing cell productivity and then reducing the production costs. It was investigated the influence or the ratio of renewed volume to total volume (R), the Urea feeding time (t(f)) and the number of successive repealed fed-batch cycles on the maximum cell concentration (X(m)), cell productivity (P(x)), nitrogen-to-cell conversion yield (Y(x/n)), maximum specific growth rate (mu(m)) and protein content of, dry biomass. The experimental results demonstrated chat R=0.80 and t(f) = 6d were the best cultivation conditions, being able to simultaneously ensure, throughout the three fed-batch cycles, the highest average values of three of the five responses (X(m) = 2101 +/- 113 mg L(-1), P(x) = 219 +/- 13 mg L(-1) d(-1) and Y(x/n) = 10.3 +/- 0.8,g g(-1)). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of S. platensis was investigated in this study through fed-batch pulse-feeding cultures performed at different carbon dioxide feeding rates (F = 0.44-1.03 g L-1 d(-1)) and photosynthetic photon flux density (PPFD = 80-250 mu mol photons m(-2) s(-1)) in a bench-scale helical photobioreactor. To achieve this purpose, an inorganic medium lacking the carbon source was enriched by gaseous carbon dioxide from a cylinder. The maximum cell concentration achieved was 12.8 g L-1 at PPFD = 166 mu mol photons m(-2) s(-1) and F= 0.44 g L-1 d(-1) of CO2. At PPFD = 80 and 125 mu mol photons m(-2) s(-1), the carbon utilization efficiency (CUE) reached maximum values of 50 and 69%, respectively, after about 20 days, and then it decreased, thus highlighting a photolimitation effect. At PPFD = 166 mu mol photons m(-2) s(-1), CUE was >= 90% between 20 and 50 days. The photosynthetic efficiency reached its maximum value (9.4%) at PPFD = 125 mu mol photons m(-2) s(-1). The photoinhibition threshold appeared to strongly depend on the feeding rate: at high PPFD, an increase in the amount of fed CO2 delayed the inhibitory effect on biomass growth, whereas at low PPFD, excess CO2 addition caused the microalga to stop growing. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rate expression for enzyme poisoning which are consistent with a Michaelis-Menten main reaction are used to analyze the performance of a fixed bed reactor containing immobilized enzyme. When enzyme deactivation results from the irreversible bonding of a product molecule to an existing substrate-enzyme complex, it is shown that minimum enzyme activity can occur in the interior of the bed, well away from the ends. This suggests that bed sectioning techniques may enable direct evaluation of fundamental poisoning mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long performance of an isothermal fixed bed reactor undergoing catalyst poisoning is theoretically analyzed using the dispersion model. First order reaction with dth order deactivation is assumed and the model equations are solved by matched asymptotic expansions for large Peclet number. Simple closed-form solutions, uniformly valid in time, are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fed-batch culture can offer significant improvement in recombinant protein production compared to batch culture in the baculovirus expression vector system (BEVS), as shown by Nguyen et al. (1993) and Bedard et al. (1994) among others. However, a thorough analysis of fed-batch culture to determine its limits in improving recombinant protein production over batch culture has yet to be performed. In this work, this issue is addressed by the optimisation of single-addition fed-batch culture. This type of fed-batch culture involves the manual addition of a multi-component nutrient feed to batch culture before infection with the baculovirus. The nutrient feed consists of yeastolate ultrafiltrate, lipids, amino acids, vitamins, trace elements, and glucose, which were added to batch cultures of Spodoptera frugiperda (Sf9) cells before infection with a recombinant Autographa californica nuclear polyhedrosis virus (Ac-NPV) expressing beta-galactosidase (beta-Gal). The fed-batch production of beta-Gal was optimised using response surface methods (RSM). The optimisation was performed in two stages, starting with a screening procedure to determine the most important variables and ending with a central-composite experiment to obtain a response surface model of volumetric beta-Gal production. The predicted optimum volumetric yield of beta-Gal in fed-batch culture was 2.4-fold that of the best yields in batch culture. This result was confirmed by a statistical analysis of the best fed-batch and batch data (with average beta-Gal yields of 1.2 and 0.5 g/L, respectively) obtained from this laboratory. The response surface model generated can be used to design a more economical fed-batch operation, in which nutrient feed volumes are minimised while maintaining acceptable improvements in beta-Gal yield. (C) 1998 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To facilitate metabolic analysis, batch fermentations of Lactobacillus rhamnosus were carried out in a new defined medium. Biomass at 10.5 g/l and lactic acid at 67 g/l with a Y-P/S of 0.84 were achieved. The maximum specific growth rate and the average productivity were 0.49/h and 2.48 g/l.h, respectively. These are comparable to those of this organism and related organisms in complex media. Preliminary amino acid studies were also conducted, highlighting the importance of serine, asparagine, glutamine and cysteine. Kinetic analysis revealed that lactic acid production was predominantly growth-associated with growth associated and non-growth associated lactic acid constants of 0.389 mol/g-cell and 0.0025 mol/g-cell.h, respectively. Finally a kinetic model has been included to describe the fermentation of L. rhamnosus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fed-batch fermentation is used to prevent or reduce substrate-associated growth inhibition by controlling nutrient supply. Here we review the advances in control of fed-batch fermentations. Simple exponential feeding and inferential methods are examined, as are newer methods based on fuzzy control and neural networks. Considerable interest has developed in these more advanced methods that hold promise for optimizing fed-batch techniques for complex fermentation systems. (C) 1999 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infection of insect cells with baculovirus was described in a mathematical model as a part of the structured dynamic model describing whole animal cell metabolism. The model presented here is capable of simulating cell population dynamics, the concentrations of extracellular and intracellular viral components, and the heterologous product titers. The model describes the whole processes of viral infection and the effect of the infection on the host cell metabolism. Dynamic simulation of the model in batch and fed-batch mode gave good agreement between model predictions and experimental data. Optimum conditions for insect cell culture and viral infection in batch and fed-batch culture were studied using the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drosophila antonietae belongs to the Drosophila buzzatii cluster, a cactophilic group of species naturally endemic to South America. Morphological and genetic analyses indicate that its populations are the most homogenous in the cluster and that the diversity observed is mainly a result of variation within populations. Seven polymorphic microsatellite loci were described for this species and used in the present study to investigate the genetic diversity of natural populations of D. antonietae by both length and sequence variation. The study aimed to understand how homoplasy and null alleles affect inferences about the population history of this species and to obtain an accurate interpretation of population inferences where these loci could be applied. The results provide useful information on the interpretation of genetic data derived from the microsatellite loci described for D. antonietae and on evolutionary aspects of cactophilic Drosophila. Importantly, the results indicate that size homoplasy and null alleles do not represent significant problems for the population genetics analyses because the large amount of variability at microsatellite loci compensate the low frequency of these problems in the populations. (C) 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 573-584.