947 resultados para pulsed rapid thermal annealing (PRTA)
Resumo:
There is a clear and increasing interest in short time annealing processing far below one second, i.e. the lower limit of Rapid Thermal Processing (RTP) called spike annealing. This was driven by the need of suppressing the so-called Transient Enhanced Diffusion in advanced boronimplanted shallow pn-junctions in silicon technology. Meanwhile the interest in flash lamp annealing (FLA) in the millisecond range spread out into other fields related to silicon technology and beyond. This paper reports on recent experiments regarding shallow junction engineering in germanium, annealing of ITO layers on glass and plastic foil to form an conductive layer as well as investigations which we did during the last years in the field of wide band gap semiconductor materials (SiC, ZnO). A more common feature evolving from our work was related to the modeling of wafer stress during millisecond thermal processing with flash lamps. Finally recent achievements in the field of silicon-based light emission basing on Metal-Oxide-Semiconductor Light Emitting Devices will be reported. © 2007 IEEE.
Resumo:
We characterized the electrical conductance of well-structured multi-walled carbon nanotubes (MWCNTs) which had post-treated by a rapid vacuum arc thermal annealing process and structure defects in these nanotubes are removed. We found that the after rapid vacuum arc annealing, the conductivity of well-structured MWCNTs can be improved by an order of magnitude. We also investigated the conductivity of MWCNTs bundle by the variation of temperatures. These results show that the conductance of annealed defect-free MWCNTs is sensitive to temperature imply the phonon scatting dominated the electron conductions. Compare to the well-structured MWCNTs, the defect scattering dominated the electron conduction in the as-grown control sample which has large amount of structure defects. A detail measurement of electron conduction from an individual well-structured MWCNT shows that the conductivity increases with temperatures which imply such MWCNTs exhibited semiconductor properties. We also produced back-gated field-effect transistors using these MWCNTs. It shows that the well-structured MWCNT can act as p-type semiconductor. © 2010 IEEE.
Resumo:
The structural properties and the room temperature luminescence of Er 2O3 thin films deposited by magnetron sputtering have been studied. In spite of the well-known high reactivity of rare earth oxides towards silicon, films characterized by good morphological properties have been obtained by using a SiO2 interlayer between the film and the silicon substrate. The evolution of the properties of the Er2O3 films due to thermal annealing processes in oxygen ambient performed at temperatures in the range of 800-1200°C has been investigated in detail. The existence of well defined annealing conditions (rapid treatments at a temperature of 1100°C or higher) allowing to avoid the occurrence of extensive chemical reactions with the oxidized substrate has been demonstrated; under these conditions, the thermal process has a beneficial effect on both structural and optical properties of the film, and an increase of the photoluminescence (PL) intensity by about a factor of 40 with respect to the as-deposited material has been observed. The enhanced efficiency of the photon emission process has been correlated with the longer lifetime of the PL signal. Finally, the conditions leading to a reaction of Er2O3 with the substrate have been also identified, and evidences about the formation of silicate-like phases have been collected. © 2006 American Institute of Physics.
Resumo:
The performance of polymer-fullerene bulk heterojunction (BHJ) solar cells is strongly dependent on the vertical distribution of the donor and acceptor regions within the BHJ layer. In this work, we investigate in detail the effect of the hole transport layer (HTL) physical properties and the thermal annealing on the BHJ morphology and the solar cell performance. For this purpose, we have prepared solar cells with four distinct formulations of poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) buffer layers. The samples were subjected to thermal annealing, applied either before (pre-annealing) or after (post-annealing) the cathode metal deposition. The effect of the HTL and the annealing process on the BHJ ingredient distribution - namely, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) - has been studied by spectroscopic ellipsometry and atomic force microscopy. The results revealed P3HT segregation at the top region of the films, which had a detrimental effect on all pre-annealed devices, whereas PCBM was found to accumulate at the bottom interface. This demixing process depends on the PEDOT:PSS surface energy; the more hydrophilic the surface the more profound is the vertical phase separation within the BHJ. At the same time those samples suffer from high recombination losses as evident from the analysis of the J-V measurements obtained in the dark. Our results underline the significant effect of the HTL-active and active-ETL (electron transport layer) interfacial composition that should be taken into account during the optimization of all polymer-fullerene solar cells. © 2012 The Royal Society of Chemistry.
Resumo:
The effect of thermal annealing on the luminescence properties of neon implanted GaN thin films was studied. Low temperature photoluminescence (PL) measurements were carried out on the samples implanted with different doses ranging from 10(14) to 9 x 10(15) cm(-2) and annealed isochronally at 800 and 900 degrees C. We observed a new peak appearing at 3.44 eV in the low temperative PL spectra of all the implanted samples after annealing at 900 degrees C. This peak has not been observed in the PL spectra of implanted samples annealed at 800 degrees C except for the samples implanted with the highest dose. The intensity of the yellow luminescence (YL) band noticed in the PL spectra measured after annealing was observed to decrease with the increase in dose until it was completely suppressed at a dose of 5 x 10(15) cm(-2). The appearance of a new peak at 3.44 eV and dose dependent suppression of the YL band are attributed to the dissociation of VGaON complexes caused by high energy ion implantation.
Resumo:
Thermal annealing effect on InAs quantum dots grown on vicinal (100) GaAs substrates is studied in comparison with dots on exact (100) GaAs substrates. We find that annealing acts stronger effect on dots with vicinal substrates by greatly accelerating the degradation of material quality. as well as slightly increasing the blueshift of the emission wavelength and the narrowing of PL linewidth. It is attributed to the higher strain in the dots formed on the vicinal substrates.
Resumo:
As-doped p-type ZnO films were grown on GaAs by sputtering and thermal diffusion process. Hall effect measurements showed that the as-grown films were of n-type conductivity and they were converted to p-type behavior after thermal annealing. Moreover, the hole concentration of As-doped p-type ZnO was very impressible to the oxygen ambient applied during the annealing process. In addition, the bonding state of As in the films was investigated by x-ray photoelectron spectroscopy. This study not only demonstrated an effective method for reliable and reproducible p-type ZnO fabrication but also helped to understand the doping mechanism of As-doped ZnO. (c) 2006 American Institute of Physics.
Resumo:
Thermal annealing of GaInAs/GaNAs quantum wells (QWs) as well as other nitrogen- and indium-contained QW structures grown by molecular beam epitaxy and its effect on optical properties are investigated. The photoluminescence (PL) and photovoltaic (PV) spectra of annealed GaInAs/GaNAs QWs show that the luminescence properties become degraded due to the N diffusion from the GaNAs barrier layers to the GaInAs well layer. Meantime, the annealing-induced blueshift of the PL peak in this QW system is mainly induced by the change of In distribution, suggesting that the In reorganization is greatly assisted by the N-induced defects. The elucidation of annealing effect in GaInAs/GaNAs QW samples is helpful for a better understanding to the annealing effect in the GaInNAs/GaAs QWs. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
GaN epilayers on sapphire substrate grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal-type low-pressure two-channel reactor were investigated. Samples were characterized by X-ray diffraction (XRD), Raman scattering, atomic force microscopy (AFM) and photoluminescence (PL) measurements. The influence of the temperature changes between low temperature (LT) deposited GaN buffer and high temperature (WT) grown GaN epilayer on crystal quality of epilayer was extensively studied. The effect of in situ thermal annealing during the growth on improving the GaN layer crystal quality was demonstrated and the possible mechanism involved in such a growth process was discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The formation of arsenic clusters in a system of vertically aligned InAs quantum islands on GaAs during thermal annealing under As overpressure has been investigated by transmission electron microscopy (TEM) and Raman scattering. Semicoherent arsenic clusters, identified by TEM examination, have been formed on the surface of the GaAs capping layer. The existence of arsenic precipitates is also confirmed by Raman spectra, showing new peaks from the annealed specimen at 256 and 199 cm(-1). These peaks have been ascribed to A(1g) and E-g Raman active phonons of crystalline arsenic. The phenomenon can be understood by a model of strain-induced selected growth under As overpressure. (C) 1999 American Institute of Physics. [S0003-6951(99)02045-8].
Resumo:
High quality ZnO films have been successfully grown on Si(100) substrates by Metal-organic chemical vapor deposition (MOCVD) technique. The optimization of growth conditions (II-VI ratio, growth temperature, etc) and the effects of film thickness and thermal treatment on ZnO films' crystal quality, surface morphology and optical properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) spectrum, respectively. The XRD patterns of the films grown at the optimized temperature (300 degrees C) show only a sharp peak at about 34.4 degrees corresponding to the (0002) peak of hexagonal ZnO, and the FWHM was lower than 0.4 degrees. We find that under the optimized growth conditions, the increase of the ZnO films' thickness cannot improve their structural and optical properties. We suggest that if the film's thickness exceeds an optimum value, the crystal quality will be degraded due to the large differences of lattice constant and thermal expansion coefficient between Si and ZnO. In PL analysis, samples all displayed only ultraviolet emission peaks and no observable deep-level emission, which indicated high-quality ZnO films obtained. Thermal treatments were performed in oxygen and nitrogen atmosphere, respectively. Through the analysis of PL spectra, we found that ZnO films annealing in oxygen have the strongest intensity and the low FWHM of 10.44 nm(106 meV) which is smaller than other reported values on ZnO films grown by MOCVD.
Resumo:
GaAs films made by molecular beam epitaxy with thicknesses ranging from 0.9 to 1.25-mu-m on Si have been implanted with Si ions at 1.2 MeV to dose of 1 x 10(15)/cm2. A rapid infrared thermal annealing and white light annealing were then used for recrystallization. Crystalline quality was analysed by using backscattering channeling technique with Li ion beam of 4.2 MeV. The experimental results show that energy selection is important for obtaining better and uniform recrystallized GaAs epilayers.
Resumo:
In this paper, we studied the changes in the photoluminescence spectra of the Ar+ ion implanted monocrystalline sapphire annealed at different atmospheres and different temperatures. Single crystals of sapphire (Al2O3) with the (1 0 (1) over bar 0) (m-samples) orientation were implanted at 623 K with 110 keV Ar+ ions to a fluence of 9.5 x 10(16) ions/cm(2). Photoluminescence measurement of the as-implanted sample shows a new emission band at 506 nm, which is attributed to the production of interstitial Al atoms. The intensity of emission band at 506 nm first increased then decreased with increase in annealing temperature. For the same annealing temperature, the intensity of PL peak at 506 nm of the sample annealed in air was higher than the sample annealed in vacuum. The experimental results show that the intensity of the PL peak at 506 nm of Ar-implanted sapphire can be enhanced by subsequent annealing with an enhancement of nearly 20 times. The influence of thermal annealing of the Ar-implanted samples on the new 506 nm emission band was discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We investigate the effect of thermal annealing before and after cathode deposition on the stability of polymer light-emitting diodes (PLEDs) based on green fluorescent polyfluorene derivative. The annealed PLEDs exhibit improved charge transport and red-shift emission compared to the as-fabricated device. The stability of the PLEDs is largely enhanced by post-annealing before and after Ca deposition, which is attributed to the enhanced charge transport and the intimate contact between the cathode and the emissive layer.
Resumo:
Periodic arrays of nanorings of morphotropic phase boundary lead zirconium titanate ( PZT) have been successfully fabricated using a novel self-assembly technique: close-packed monolayers of latex nanospheres were deposited onto Pt-coated silicon substrates, and then plasma cleaned to form ordered arrays of isolated nanospheres, not in contact with each other. Subsequent pulsed laser deposition of PZT, high angle argon ion etching and thermal annealing created the arrays of isolated nanorings, with diameters of similar to 100 nm and wall thicknesses of similar to 10 nm. Energy dispersive x-ray analysis confirms that the rings are compositionally morphotropic phase boundary PZT, and high resolution transmission electron microscopy imaging of lattice fringes demonstrates some periodicities consistent with perovskite rather than pyrochlore material. The dimensions of these nanorings, and the expected 'soft' behaviour of the ferroelectric material from which they are made, means that they offer the most likely opportunity to date for observing whether or not vortex arrangements of electrical dipoles, analogous to those seen in ferromagnetic nanostructures, actually exist.