245 resultados para protonation
Resumo:
Diese Arbeit beschreibt zum ersten Mal die kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche, motiviert im Hinblick auf die Nutzung der Synthesemethode für die molekulare Elektronik und verwandte Anwendungen. Durch die Verwendung der Nichtkontakt-Rasterkraftmikroskopie und der Kelvinprobe-Mikroskopie bei Raumtemperatur wurden grundlegende molekulare Prozesse der Wechselwirkungen zwischen Molekülen und der Calcit(10.4) Oberfläche sowie die chemische Reaktivität der Moleküle auf der Oberfläche analysiert. Das Zusammenspiel zwischen intermolekularen und Molekül-Oberfläche Wechselwirkungen zeigt sich für Biphenyl-4,4'-dicarbonsäure (BPDCA) durch die Koexistenz zweier unterschiedlicher molekularer Strukturen, die einen Einblick in die treibenden Kräfte der molekularen Selbstorganisation bieten. Die sehr ausgeprägte Reihenstruktur basiert auf der optimalen geometrischen Struktur der BPDCA Moleküle zu den Abmessungen des Substrats, während die zweite Struktur durch Wasserstoffbrücken zwischen den Molekülen gekennzeichnet ist. Der Deprotonierungsvorgang von 2,5-Dihydroxybenzoesäure (DHBA)-Molekülen auf Calcit wird bei Zimmertemperatur gezeigt. Zwei Phasen werden beobachtet, die nach Aufbringen der Moleküle koexistieren. Mit der Zeit geht eine bulk-ähnliche Phase in eine stabile, dicht gepackte Phase über. Der Übergang wird durch Betrachtung des Protonierungszustands der Moleküle erklärt. Die bulk-ähnliche Phase benötigt Wasserstoffbrückbindungen zur Strukturbildung. Werden die Moleküle deprotoniert, so wird die resultierende dicht gepackte Phase durch die elektrostatische Wechselwirkung der deprotonierten Carboxylatgruppen mit den Oberflächen-Calciumkationen stabilisiert. 4-Iodbenzoesäure (IBA)-Moleküle bilden auf Calcit nur Inseln an Stufenkanten, was auf die schwache Molekül-Oberflächen-Wechselwirkung zurückzuführen ist. Für einen stärkeren Einfluss des Substrats durchlaufen die Moleküle einen kontrollierten Übergangsschritt vom protonierten zum deprotonierten Zustand. Im deprotonierten Zustand nehmen die Moleküle eine wohldefinierte Adsorptionsposition auf dem Substrat ein. Die deprotonierte Säuregruppe wird ausgenutzt, um die Desorption der halogensubstituierten Benzoesäure-Moleküle bei der thermischer Aktivierung für die Vernetzungsreaktion zu vermeiden. Darüber hinaus wird die Carboxylatgruppe als starker Elektronendonor verwendet um die Phenyl-Halogen-Bindung zu schwächen und somit die homolytische Spaltung dieser Bindung auch bei moderaten Temperaturen zu ermöglichen. Diesem Konzept folgend ist die erste erfolgreiche kovalente Verknüpfung von 2,5-Diiod-benzoesäure, 2,5-Dichlorbenzoesäure, 3,5-Diiod Salicylsäure und 4-Iod-benzoesäure zu durchkonjugierten molekularen Drähten, Zick-Zack-Strukturen sowie Dimere gezeigt durch Ausnutzen von unterschiedlichen Substitutionsposition sowie Ändern der Anzahl der substituierten Halogenatome. Aufbauend auf diesem Erfolg, wird eine zweistufige Vernetzungsreaktion vorgestellt. Zum Induzieren der ortsspezifischen und sequentiellen kovalenten Verknüpfung wird ein Ausgangsmolekül gewählt, das sowohl eine Bromphenyl als auch eine Chlorphenyl Gruppe mit unterschiedlichen Dissoziationsenergien für die homolytische Spaltung besitzt. Die Reaktionsstellen und sequentielle Reihenfolge für die Reaktion sind somit in der molekularen Struktur einkodiert und bisher unerreichte Reaktionspfade können mithilfe der kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche beschritten werden.
Resumo:
Inspiriert durch natürlich vorkommende Peptide, sind Poly(2-oxazoline) vielversprechende Kandidaten für Anwendungen in Bereichen des kontrollierten Wirkstoff- bzw. Gentransportes, wie die moderne Biomedizin dies fordert. Da Polyoxazoline als strukturisomere Amide von natürlichen Polypeptiden aufgefasst werden können, zeigen diese synthetischen Polymere in direktem Vergleich erhebliche Vorteile etwa hinsichtlich Zytotoxizät und Effizienz, was wesentlich dazu beitragen kann, aktuelle Hürden biomedizinischer Fragestellungen hinsichtlich Transport und Targeting zu überwinden. Darüber hinaus sollten zylindrische Polymerbürsten aufgrund ihrer molekularen, architekturbedingten Formanisotropie und jüngsten Ergebnissen insbesondere zur formabhängigen Endozytose sehr aussichtsreiche Kandidaten für den Einsatz zum Wirkstofftransport sein.rnrnDie vorliegende Arbeit widmete sich deshalb der Synthese und Charakterisierung von biokompatiblen zylindrischen Poly(2-oxazolin)bürsten als potentielle Nanotransporter von Wirkstoffen, Biomolekülen oder genetischem Material. Als Monomer wurde zunächst 2-Isopropyloxazolin gewählt, da das Polymer eine Phasenübergangstemperatur von 37 °C besitzt, was für Konjugatsynthesen wie auch diverse biomedizinische Applikationen interessant sein kann. Durch terminierende Methacrylamid Funktionalisierung der lebenden kationischen Oxazolinpolymerisation bzw. nachfolgende Endgruppen Transferreaktionen sind Makromonomere im Bereich 1000-5000 g/mol zugänglich. Erstmals gelang es so 2-Oxazolin basierte, hochmolekulare zylindrische Bürsten mit Konturlängen im Bereich von 250 nm mittels „Grafting Through“ Technik in freier radikalischer Polymerisation herzustellen.rnrnAusgehend von der entwickelten Syntheseroute konnten so neben Homo- und Blockcopolymerbürsten von 2-Ethyl-2-oxazolin und 2-Isopropyl-2-oxazolin auch Bürstenmoleküle aus statistischen Copolymeren von 2-Ethyl-2-oxazolin und unsubstituiertem 2-Oxazolin hergestellt werden. Während letztere die Einführung kationischer Gruppen durch selektivere Abspaltmethoden der Formylreste erlauben und so etwa DNA/RNA Komplexierungen ermöglichen können, bietet andererseits der in dieser Arbeit erstmalig demonstrierte Einsatz Azid-funktionalisierter Initiatoren zur kationischen Oxazolinpolymerisation unter Beibehaltung aller anderen sonstigen Reaktionsschritte auch die Möglichkeit der Synthese Azid-Endgruppen-funktionalisierter Makromonomere. Die „Grafting Through“ Methodik der freien radikalischen Makromonomer Polymerisation ist selbst bei diesen funktionalisierten Systemen von großem Vorteil, erlaubt sie auch hier den Zugang zu hochmolekularen Substraten mit einem Pfropfungs- bzw. Funktionalisierungsgrad von 100 %, da jede Seitenkette dieser zylindrischen Bürsten die aussenliegende, und damit sterisch leichter zugängliche funktionale Gruppe trägt. Dabei gelang es die Syntheseroute so zu gestalten, dass es möglich war alle vorgestellten Polymerbürsten mittels statischer und dynamischer Lichtstreuung hinsichtlich absoluter Molmasse und molekularer Dimension zu charakterisieren.rnIn weitereren Reaktionen konnten dann reaktive Fluoreszenzfarbstoffe mit Hilfe kupferfreier 1,3 dipolarerer Addition (kupferfreie „Click-Chemie“) an die Azid-funktionalisierten Polymerbürsten angebunden werden, so dass eine wesentliche Voraussetzung für die Detektion in in vivo und in vitro Experimenten erfüllt werden kann. Darüber hinaus gelingt die quantitative polymeranaloge Umsetzung der Azid- zu Aminogruppen durch eine polymeranalog geführte Reduktion nach Staudinger; damit können an diesen Systemen auch etablierte Konjugationstechniken an Aminogruppen durchgeführt werden. Zudem erlauben die Aminogruppen-haltigen Polymerbürsten durch Protonierung schon bei physiologischem pH die Komplexierung von DNA oder RNA. rnrnErste Lichtstreumessungen in Blutserum zeigen im Falle der kationischen Aminogruppen tragenden Polymerbürsten zwar Aggregation, was aber durch entsprechende Umsetzung nach Konjugation wahrscheinlich unterdrückt werden kann, zeigen doch die entsprechenden Precursorpolymerbürsten mit Azidgruppen in Serum keinerlei Aggregation.rnrnZellaufnahmestudien in dendritische Zellen zeigen nur im Falle einer Azid-funktionalisierten Poly(2-isopropyl-2-oxazolin)bürste eine unspezifische Aufnahme. Die hydrophileren Poly(2-oxazolin)bürsten weise keine unspezifische Aufnahme auf, was eine wichtige Anfoderung für die Verwendung als Polymercarrier in der Krebsimmuntherapie ist.rn
Resumo:
Die biologische Stickstofffixierung durch Molybdän-haltige Nitrogenasen sowie die Erforschung des zugrundeliegenden komplexen Mechanismus (N2-Aktivierung an Metall-Zentren, 6-fache Protonierung und Reduktion, N–N Bindungsspaltung unter Bildung von Ammoniak) ist von erheblichem Interesse. Insbesondere Molybdän-Komplexe wurden bereits erfolgreich als Modellverbindungen für die Untersuchung elementarer Einzelschritte der N2-Aktivierung eingesetzt. Durch die Verwendung von Triamidoamin-Liganden ist es Schrock et al. sogar gelungen mehrere Katalysezyklen zu durchlaufen und einen Mechanismus zu formulieren. Trotz der sterisch anspruchsvollen Substituenten in den Schrock-Komplexen ist die Umsatzrate dieses homogenen Katalysators, aufgrund Komplex-Deaktivierung infolge intermolekularer Reaktionen wie Dimerisierung und Disproportionierung, limitiert. In der vorliegenden Arbeit wurden einige dieser Herausforderungen angegangen und die aktiven Spezies auf einer Festphase immobilisiert, um intermolekulare Reaktionen durch räumliche Isolierung der Komplexe zu unterdrücken.rnEin Polymer-verankertes Analogon des Schrock Nitrido-Molybdän(VI)-Komplexes wurde auf einem neuen Reaktionsweg synthetisiert. Dieser beinhaltet nur einen einzigen Reaktionsschritt, um die funktionelle Gruppe „MoN“ einzuführen. Protonierung des immobilisierten Nitrido-Molybdän(VI)-Komplexes LMoVIN (L = Polymer-verankerter Triamidoamin-Ligand) mit 2,6-Lutidinium liefert den entsprechenden Imido-Molybdän(VI)-Komplex. Durch anschließende Ein-Elektronen-Reduktion mit Cobaltocen wird der Polymer-angebundene Imido-Molybdän(V)-Komplex erhalten, bewiesen durch EPR-Spektroskopie (g1,2,3 = 1.989, 1.929, 1.902). Durch die Immobilisierung und die effektive räumliche Separation der Reaktionszentren auf der Festphase werden bimolekulare Nebenreaktionen, die oft in homogenen Systemen auftreten, unterdrückt. Dies ermöglicht zum ersten Mal die Darstellung des Imido-Molybdän(V)-Intermediates des Schrock-Zyklus.rnEPR-Spektren des als Spin-Label eingeführten immobilisierten Nitrato-Kupfer(II)-Komplexes wurden unter verschiedenen Bedingungen (Lösungsmittel, Temperatur) aufgenommen, wobei sich eine starke Abhängigkeit zwischen der Zugänglichkeit und Reaktivität der immobilisierten Reaktionszentren und der Art des Lösungsmittels zeigte. Somit wurde die Reaktivität von LMoVIN gegenüber Protonen und Elektronen, welches zur Bildung von NH3 führt, unter Verwendung verschiedener Lösungsmittel untersucht und optimiert. Innerhalb des kugelförmigen Polymers verläuft die Protonierung und Reduktion von LMoVIN stufenweise. Aktive Zentren, die sich an der „äußeren Schale“ des Polymers befinden, sind gut zugänglich und reagieren schnell nach H+/e− Zugabe. Aktive Zentren im „Inneren des Polymers“ hingegen sind schlechter zugänglich und zeigen langsame diffusions-kontrollierte Reaktionen, wobei drei H+/e− Schritte gefolgt von einer Ligandenaustausch-Reaktion erforderlich sind, um NH3 freizusetzen: LMoVIN LMoVNH LMoIVNH2 LMoIIINH3 und anschließender Ligandenaustausch führt zur Freisetzung von NH3.rnIn einem weiteren Projekt wurde der Bis(ddpd)-Kupfer(II)-Komplex EPR-spektroskopisch in Hinblick auf Jahn−Teller-Verzerrung und -Dynamik untersucht. Dabei wurden die EPR-Spektren bei variabler Temperatur (70−293 K) aufgenommen. Im Festkörperspektrum bei T < 100 K erscheint der Kupfer(II)-Komplex als gestreckter Oktaeder, wohingegen das EPR-Spektrum bei höheren Temperaturen g-Werte aufzeigt, die einer pseudo-gestauchten oktaedrischen Kupfer(II)-Spezies zuzuordnen sind. Diese Tatsache wird einem intramolekularen dynamischen Jahn−Teller Phänomen zugeschrieben, welcher bei 100 K eingefroren wird.
Resumo:
Phosphonatliganden in erweiterten anorganischen Hybridmaterialien undrnals Radikalträgern in KomplexenrnrnAnorganisch-organische Hybridmaterialien sind in der Regel extrem vielseitig. Die systematische Darstellung von niederdimensionalen Materialien (eindimensionale Kettenverbindungen oder zweidimensionalen Schichtverbindungen) mit einer Kontrolle über die Art der Verbindung,rnbietet neue Möglichkeiten im Bereich des molekularen Magnetismus. Hier im Fall von Metall-Phosphonat Verbindungen in erweiterten anorganischen Hybriden wurde der pH - Wert während der Reaktion eingestellt, wodurch der Grad der Protonierung des Phosphonatliganden kontrolliert wurde. Aufgrund der Tatsache, dass alle erhaltenen Metall Phosphonatverbindungen neutral waren, konnte das Ligand zu Metallverhältnis erstmals vorhergesagt werden. So wurden mehrere neue Metall–Phosphonat Verbindungen im Bereich von Null-dimensionalen (I0O0, Co-Kristallisation von M(H2O)6 mitrndeprotonierten Phosphonatligand), über eindimensionalen (I1O0, Kettenstrukturen) bis hin zu zweidimensionalen (I2O0, Schichtstrukturen) ausführlich diskutiert in Bezug auf ihr magnetisches Verhalten. Im Allgemeinen sind die erwarteten Austauschwechselwirkungen in einem erweiterten anorganischen Hybridmaterial stark, weil oft ein Superaustausch durch ein einzelnes Sauerstoffatom möglich ist. Hier waren oft mehrere konkurrierende Austauschwechselwirkungen vorhanden, so dass kompliziertere magnetische Verhalten beobachtet wurden.rnrnDarüber hinaus wurden drei neue Beispiele von Nitronyl-Nitroxidradikale dargestellt, in denen eine zusätzliche saure Funktionalität eingeführt war. Die Auswirkungen des sauren Charakters der zusätzlich eingeführten Sulfonsäure oder Phosphonsäure-Gruppe auf das Nitronyl-Nitroxidradikal wurden im Detail zum ersten Mal untersucht. Die mit der Phosphonsäure-Gruppe versehenen Nitronyl-Nitroxidradikale sind perfekte Proben für die Untersuchung einer Spin-Verschiebung in Nitronyl-Nitroxidradikale durch EPR-Spektroskopie, aufgrund des eingeführten Phosphors. Auch der Protonierungsgrad der zusätzlich eingeführten Phosphonsäure-Gruppe wurde berücksichtigt. In dieser Arbeit wurden die ersten Metallkomplexe der neuen substituierten sauren Nitronyl-Nitroxidradikale vorgestellt. Die Koordination von Nickel(II) Metallionen an die saure, zweite funktionelle Gruppe des Nitronyl–Nitroxid Radikal wurde beschrieben. Die magnetische Austauschwechselwirkung der Metallionen untereinander und die Metall-Radikal-Austauschwechselwirkungen wurden untersucht. rnrnIm Allgemeinen können interessante molekulare magnetische Materialien dadurch dargestellt werden, dass die Dimension der Metall-Phosphonat-Verbindungen als Beispiele für die erweiterten anorganischen Hybridmaterialien gesteuert werden kann. Mit Nitronyl-Nitroxidradikale als organische Liganden können in Zukunft noch mehr Spin-Träger in anorganisch-organischen Gerüstmaterialien integriert werden um die magnetischen Eigenschaften zu verbesseren.rn
Resumo:
Il presente lavoro di tesi si inserisce in un progetto di ricerca volto alla sintesi di nuovi complessi di metalli di transizione per lo sviluppo di catalizzatori bifunzionali metallo-legante da impiegare in reazioni di catalisi omogenea, in particolare in reazioni redox quali idrogenazione e deidrogenazione attraverso il trasferimento di idrogeno. Il mio progetto ha riguardato la messa a punto della sintesi di complessi di Ru(0) che combinano leganti ciclopentadienonici e carbeni N-eterociclici e la sintesi dei corrispondenti complessi cationici per protonazione. Inoltre, è stato sintetizzato e caratterizzato un nuovo complesso cationico attraverso la metilazione del corrispettivo complesso neutro. I complessi sintetizzati sono stati utilizzati come precursori di catalizzatori nella riduzione tramite trasferimento di idrogeno del 4-fluoroacetofenone, valutandone l’attività catalitica in relazione a leganti, additivi e controioni. Allo scopo di delineare qualche ipotesi sul meccanismo di reazione sono stati effettuati diversi studi sulla reattività dei complessi impiegati in catalisi, in particolare usando la piridina come agente di “trapping”. Infine, è stato condotto uno studio preliminare dell’attività catalitica dei complessi sintetizzati nell’ossidazione di benzilalcol a benzaldeide. The present work is part of a research project that involves the study of new ruthenium-based transition metal complexes in order to develop new metal-ligand bifunctional catalysts to employ in homogeneous catalytic systems, in particular in redox reactions such as hydrogenation and dehydrogenation through hydrogen transfer. My project is focused on the optimization of the synthesis of Ru(0) complexes that combines different ligands as tetraphenylcyclopentadienone and N-heterocyclic carbenes and the synthesis of the corresponding cationic complexes by protonation. Furthermore, it is reported the synthesis and characterization of a new cationic complex obtained by methylation of the corresponding neutral complex. All the prepared complexes were employed as catalyst precursors in the transfer hydrogenation of 4-fluoroacetophenone and their performances were investigated in relation to the type of ligands, additives and counterions. The reactivity of these ruthenium complexes was also investigated with the aim of delineate some hypothesis on the reaction mechanism, in particular employing pyridine as a trapping agent. Finally, preliminary studies on the oxidation of benzyl alcohol have been carried out.
Resumo:
The pH-dependent membrane adsorption and distribution of three chlorin derivatives, chlorin e6 (CE), rhodin G7 (RG), and monoaspartyl-chlorin e6 (MACE), in the physiological pH range (pH 6-8) were probed by NMR spectroscopy. Unilamellar vesicles consisting of dioleoyl-phosphatidyl-choline (DOPC) were used as membrane models. The chlorin derivatives were characterized with respect to their aggregation behavior, the pK(a) values of individual carboxylate groups, the extent of membrane adsorption, and their flip-flop rates across the bilayer membrane for pH 6-8. External membrane adsorption was found to be lower for RG than for CE and MACE. Both electrostatic interactions and the extent of aggregation seemed to be the main determinants of membrane adsorption. Rate constants for chlorin transfer across the membrane were found to correlate strongly with the pH of the surrounding medium, in particular, for CE and RG. In acidic solution, CE and RG transfer across the membrane was strongly accelerated, and in basic solution, all compounds were retained, mostly in the outer monolayer. In contrast, MACE flip-flop across the membrane remained very low even at pH 6. The protonation of ionizable groups is suggested to be a major determinant of chlorin transfer rates across the bilayer. pK(a) values of CE and RG were found to be between 6 and 8, and two of the carboxylate groups in MACE had pK(a) values below 6. For CE and RG, the kinetic profiles at acidic pH indicated that the initial fast membrane distribution was followed by secondary steps that are discussed in this article.
Resumo:
Alkoxy-N-methyl-acetiminium salts were prepared by addition of CH3OH and C2H5OH to N-methyl acetonitrilium fluorosulfonate at low temperature. Analysis of the (5)J(HH) and (3)J(13)C-H coupling constants in the NMR spectra showed an anti addition with a diastereoselectivity of >9596. Deprotonation of these salts with (Z)-configuration gave the corresponding N-methyl-alkoxyacetimines with very high (E)-configuration. Upon protonation at -78 degrees C, these iminoesters gave the corresponding alkoxy-N-methyl-acetirninium salts with (E)-configuration. Computational analyses of the iminoesters and the corresponding iminium cations including the conformations give insight into the relative stability. Nitrilium salts can be used as reagents, exemplified by some esterifications between simple acids and alcohols.
Resumo:
The ligand 1,2-bis(1H-benzimidazol-2-yl)-1,2-ethanediol, 1, and its methylated derivative 2 are readily synthesized from tartaric acid, and act as chiral, facially coordinating tridentate ligands, forming complexes of composition ML2 with octahedral transition metals. The copper(II) complexes show distorted 4 + 2 coordination with benzimidazoles occupying the equatorial sites and alcohol functions weakly binding in the axial sites. Nickel(II) complexes in three different states of protonation show regular octahedral geometry with the alcohols mutually cis. Deprotonation of the coordinated alcohol produces little structural change but the monodeprotonated complex forms a hydrogen bonded dimer. Magnetic measurements show the hydrogen bonded bridge to offer a pathway for weak antiferromagnetic coupling. UV-Visible spectroscopy shows the ligand to have a field intermediate between water and pyridine. The diastereoselectivity of complexation depends on the geometry: nickel(II) shows a weak preference for the homochiral complex, whereas copper(II) forms almost exclusively homochiral complexes.
Resumo:
Attempted hydrogen–deuterium exchange of trimethyloxonium ion, (CH3)3O+ with excess of 1:1 2HF/SbF5 superacid at −30°C over a period of 30 days showed no exchange. Theoretical calculations at the MP2/6–31G** level are in accord with the lack of hydrogen–deuterium exchange in the methyl group of the (CH3)3O+ cation as protonation (protosolvation) prefers the oxygen lone pair of electrons, instead of a C—H bond. Methylation of aromatics with the (CH3)3O+CF3SO3− in CF3SO3H and 2CF3SO3H:B(O3SCF3)3 was also studied. Whereas in triflic acid no alkylation was observed, in triflatoboric acid, a powerful superacid, alkylation takes place, indicating protolytic activation of the trimethyloxonium ion.
Resumo:
Contrary to previous theoretical studies at the UHF/6-31G* level, the methonium radical dication CH52+ is not a Cs symmetrical structure with a 2e—3c bond but a C2v symmetrical structure 1 with two 2e—3c bonds (at the UHF/6-31G**, UMP2/6-31G**, and UQCISD(T)/6-311G** levels). The Cs symmetrical structure is not even a minimum at the higher level of calculations. The four hydrogen atoms in 1 are bonded to the carbon atom by two 2e—3c bonds and the fifth hydrogen atom by a 2e—2c bond. The unpaired electron of 1 is located in a formal p-orbital (of the sp2-hybridized carbon atom) perpendicular to the plane of the molecule. Hydrogen scrambling in 1 is however extremely facile, as is in other C1 cations. It is found that the protonation of methane to CH5+ decreases the energy for subsequent homolytic cleavage resulting in the exothermic (24.1 kcal/mol) formation of CH4+•. Subsequent reaction with neutral methane while reforming CH5+ gives the methyl radical enabling reaction with excess methane to ethane and H2. The overall reaction is endothermic by 11.4 kcal/mol, but offers under conditions of oxidative removal of H2 an alternative to the more energetic carbocationic conversion of methane.
Resumo:
Antigenic peptide loading of major histocompatibility complex class II molecules is enhanced by lysosomal pH and catalyzed by the HLA-DM molecule. The physical mechanism behind the catalytic activity of DM was investigated by using time-resolved fluorescence anisotropy (TRFA) and fluorescence binding studies with the dye 8-anilino-1-naphthalenesulfonic acid (ANS). We demonstrate that the conformations of both HLA-DM and HLA-DR3, irrespective of the composition of bound peptide, are pH sensitive. Both complexes reversibly expose more nonpolar regions upon protonation. Interaction of DM with DR shields these hydrophobic domains from the aqueous environment, leading to stabilization of the DM and DR conformations. At lysosomal pH, the uncovering of additional hydrophobic patches leads to a more extensive DM–DR association. We propose that DM catalyzes class II peptide loading by stabilizing the low-pH conformation of DR, favoring peptide exchange. The DM–DR association involves a larger hydrophobic surface area with DR/class II-associated invariant chain peptides (CLIP) than with stable DR/peptide complexes, explaining the preferred association of DM with the former. The data support a release mechanism of DM from the DM–DR complex through reduction of the interactive surface, upon binding of class II molecules with antigenic peptide or upon neutralization of the DM–DR complex at the cell surface.
Resumo:
In bacterial photosynthetic reaction centers, the protonation events associated with the different reduction states of the two quinone molecules constitute intrinsic probes of both the electrostatic interactions and the different kinetic events occurring within the protein in response to the light-generated introduction of a charge. The kinetics and stoichiometries of proton uptake on formation of the primary semiquinone QA− and the secondary acceptor QB− after the first and second flashes have been measured, at pH 7.5, in reaction centers from genetically modified strains and from the wild type. The modified strains are mutated at the L212Glu and/or at the L213Asp sites near QB; some of them carry additional mutations distant from the quinone sites (M231Arg → Leu, M43Asn → Asp, M5Asn → Asp) that compensate for the loss of L213Asp. Our data show that the mutations perturb the response of the protein system to the formation of a semiquinone, how distant compensatory mutations can restore the normal response, and the activity of a tyrosine residue (M247Ala → Tyr) in increasing and accelerating proton uptake. The data demonstrate a direct correlation between the kinetic events of proton uptake that are observed with the formation of either QA− or QB−, suggesting that the same residues respond to the generation of either semiquinone species. Therefore, the efficiency of transferring the first proton to QB is evident from examination of the pattern of H+/QA− proton uptake. This delocalized response of the protein complex to the introduction of a charge is coordinated by an interactive network that links the Q− species, polarizable residues, and numerous water molecules that are located in this region of the reaction center structure. This could be a general property of transmembrane redox proteins that couple electron transfer to proton uptake/release reactions.
Resumo:
Inward-rectifier K+ channels of the ROMK (Kir1.1) subtype are responsible for K+ secretion and control of NaCl absorption in the kidney. A hallmark of these channels is their gating by intracellular pH in the neutral range. Here we show that a lysine residue close to TM1, identified previously as a structural element required for pH-induced gating, is protonated at neutral pH and that this protonation drives pH gating in ROMK and other Kir channels. Such anomalous titration of this lysine residue (Lys-80 in Kir1.1) is accomplished by the tertiary structure of the Kir protein: two arginines in the distant N and C termini of the same subunit (Arg-41 and Arg-311 in Kir1.1) are located in close spatial proximity to the lysine allowing for electrostatic interactions that shift its pKa into the neutral pH range. Structural disturbance of this triad as a result from a number of point mutations found in patients with antenatal Bartter syndrome shifts the pKa of the lysine residue off the neutral pH range and results in channels permanently inactivated under physiological conditions. Thus, the results provide molecular understanding for normal pH gating of Kir channels as well as for the channel defects found in patients with antenatal Bartter syndrome.
Resumo:
We have investigated the pH dependence of the dynamics of conformational fluctuations of green fluorescent protein mutants EGFP (F64L/S65T) and GFP-S65T in small ensembles of molecules in solution by using fluorescence correlation spectroscopy (FCS). FCS utilizes time-resolved measurements of fluctuations in the molecular fluorescence emission for determination of the intrinsic dynamics and thermodynamics of all processes that affect the fluorescence. Fluorescence excitation of a bulk solution of EGFP decreases to zero at low pH (pKa = 5.8) paralleled by a decrease of the absorption at 488 nm and an increase at 400 nm. Protonation of the hydroxyl group of Tyr-66, which is part of the chromophore, induces these changes. When FCS is used the fluctuations in the protonation state of the chromophore are time resolved. The autocorrelation function of fluorescence emission shows contributions from two chemical relaxation processes as well as diffusional concentration fluctuations. The time constant of the fast, pH-dependent chemical process decreases with pH from 300 μs at pH 7 to 45 μs at pH 5, while the time-average fraction of molecules in a nonfluorescent state increases to 80% in the same range. A second, pH-independent, process with a time constant of 340 μs and an associated fraction of 13% nonfluorescent molecules is observed between pH 8 and 11, possibly representing an internal proton transfer process and associated conformational rearrangements. The FCS data provide direct measures of the dynamics and the equilibrium properties of the protonation processes. Thus FCS is a convenient, intrinsically calibrated method for pH measurements in subfemtoliter volumes with nanomolar concentrations of EGFP.
Resumo:
Through the use of site-directed mutagenesis and chemical rescue, we have identified the proton acceptor for redox-active tyrosine D in photosystem II (PSII). Effects of chemical rescue on the tyrosyl radical were monitored by EPR spectroscopy. We also have acquired the Fourier–transform infrared (FT-IR) spectrum associated with the oxidation of tyrosine D and concomitant protonation of the acceptor. Mutant and isotopically labeled PSII samples are used to assign vibrational lines in the 3,600–3,100 cm−1 region to N-H modes of His-189 in the D2 polypeptide. When His-189 in D2 is changed to a leucine (HL189D2) in PSII, dramatic alterations of both EPR and FT-IR spectra are observed. When imidazole is introduced into HL189D2 samples, results from both EPR and FT-IR spectroscopy argue that imidazole is functionally reconstituted into an accessible pocket and that imidazole acts as a chemical mimic for His-189. Small perturbations of EPR and FT-IR spectra are consistent with access to this pocket in wild-type PSII, as well. Structures of the analogous site in bacterial reaction centers suggest that an accessible pocket, large enough to contain imidazole, is bordered by tyrosine D and His-189 in the D2 polypeptide. These data provide evidence that His-189 in the D2 polypeptide of PSII acts as a proton acceptor for redox-active tyrosine D and that proton transfer to the imidazole ring facilitates the efficient oxidation/reduction of tyrosine D.