778 resultados para predictive algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

“Many-core” systems based on a Network-on-Chip (NoC) architecture offer various opportunities in terms of performance and computing capabilities, but at the same time they pose many challenges for the deployment of real-time systems, which must fulfill specific timing requirements at runtime. It is therefore essential to identify, at design time, the parameters that have an impact on the execution time of the tasks deployed on these systems and the upper bounds on the other key parameters. The focus of this work is to determine an upper bound on the traversal time of a packet when it is transmitted over the NoC infrastructure. Towards this aim, we first identify and explore some limitations in the existing recursive-calculus-based approaches to compute the Worst-Case Traversal Time (WCTT) of a packet. Then, we extend the existing model by integrating the characteristics of the tasks that generate the packets. For this extended model, we propose an algorithm called “Branch and Prune” (BP). Our proposed method provides tighter and safe estimates than the existing recursive-calculus-based approaches. Finally, we introduce a more general approach, namely “Branch, Prune and Collapse” (BPC) which offers a configurable parameter that provides a flexible trade-off between the computational complexity and the tightness of the computed estimate. The recursive-calculus methods and BP present two special cases of BPC when a trade-off parameter is 1 or ∞, respectively. Through simulations, we analyze this trade-off, reason about the implications of certain choices, and also provide some case studies to observe the impact of task parameters on the WCTT estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several popular Ansatze of lepton mass matrices that contain texture zeros are confronted with current neutrino observational data. We perform a systematic chi(2) analysis in a wide class of schemes, considering arbitrary Hermitian charged-lepton mass matrices and symmetric mass matrices for Majorana neutrinos or Hermitian mass matrices for Dirac neutrinos. Our study reveals that several patterns are still consistent with all the observations at the 68.27% confidence level, while some others are disfavored or excluded by the experimental data. The well-known Frampton-Glashow-Marfatia two-zero textures, hybrid textures, and parallel structures (among others) are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the predictive value of genetic polymorphisms in the context of BCG immunotherapy outcome and create a predictive profile that may allow discriminating the risk of recurrence. MATERIAL AND METHODS: In a dataset of 204 patients treated with BCG, we evaluate 42 genetic polymorphisms in 38 genes involved in the BCG mechanism of action, using Sequenom MassARRAY technology. Stepwise multivariate Cox Regression was used for data mining. RESULTS: In agreement with previous studies we observed that gender, age, tumor multiplicity and treatment scheme were associated with BCG failure. Using stepwise multivariate Cox Regression analysis we propose the first predictive profile of BCG immunotherapy outcome and a risk score based on polymorphisms in immune system molecules (SNPs in TNFA-1031T/C (rs1799964), IL2RA rs2104286 T/C, IL17A-197G/A (rs2275913), IL17RA-809A/G (rs4819554), IL18R1 rs3771171 T/C, ICAM1 K469E (rs5498), FASL-844T/C (rs763110) and TRAILR1-397T/G (rs79037040) in association with clinicopathological variables. This risk score allows the categorization of patients into risk groups: patients within the Low Risk group have a 90% chance of successful treatment, whereas patients in the High Risk group present 75% chance of recurrence after BCG treatment. CONCLUSION: We have established the first predictive score of BCG immunotherapy outcome combining clinicopathological characteristics and a panel of genetic polymorphisms. Further studies using an independent cohort are warranted. Moreover, the inclusion of other biomarkers may help to improve the proposed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new parallel implementation of a previously hyperspectral coded aperture (HYCA) algorithm for compressive sensing on graphics processing units (GPUs). HYCA method combines the ideas of spectral unmixing and compressive sensing exploiting the high spatial correlation that can be observed in the data and the generally low number of endmembers needed in order to explain the data. The proposed implementation exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs using shared memory and coalesced accesses to memory. The proposed algorithm is evaluated not only in terms of reconstruction error but also in terms of computational performance using two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN. Experimental results using real data reveals signficant speedups up with regards to serial implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a step count algorithm designed to work in real-time using low computational power. This proposal is our first step for the development of an indoor navigation system, based on Pedestrian Dead Reckoning (PDR). We present two approaches to solve this problem and compare them based in their error on step counting, as well as, the capability of their use in a real time system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an ankle mounted Inertial Navigation System (INS) used to estimate the distance traveled by a pedestrian. This distance is estimated by the number of steps given by the user. The proposed method is based on force sensors to enhance the results obtained from an INS. Experimental results have shown that, depending on the step frequency, the traveled distance error varies between 2.7% and 5.6%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores – Sistemas Digitais e Percepcionais pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A correlation and predictive scheme for the viscosity and self-diffusivity of liquid dialkyl adipates is presented. The scheme is based on the kinetic theory for dense hard-sphere fluids, applied to the van der Waals model of a liquid to predict the transport properties. A "universal" curve for a dimensionless viscosity of dialkyl adipates was obtained using recently published experimental viscosity and density data of compressed liquid dimethyl (DMA), dipropyl (DPA), and dibutyl (DBA) adipates. The experimental data are described by the correlation scheme with a root-mean-square deviation of +/- 0.34 %. The parameters describing the temperature dependence of the characteristic volume, V-0, and the roughness parameter, R-eta, for each adipate are well correlated with one single molecular parameter. Recently published experimental self-diffusion coefficients of the same set of liquid dialkyl adipates at atmospheric pressure were correlated using the characteristic volumes obtained from the viscosity data. The roughness factors, R-D, are well correlated with the same single molecular parameter found for viscosity. The root-mean-square deviation of the data from the correlation is less than 1.07 %. Tests are presented in order to assess the capability of the correlation scheme to estimate the viscosity of compressed liquid diethyl adipate (DEA) in a range of temperatures and pressures by comparison with literature data and of its self-diffusivity at atmospheric pressure in a range of temperatures. It is noteworthy that no data for DEA were used to build the correlation scheme. The deviations encountered between predicted and experimental data for the viscosity and self-diffusivity do not exceed 2.0 % and 2.2 %, respectively, which are commensurate with the estimated experimental measurement uncertainty, in both cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new method to blindly unmix hyperspectral data, termed dependent component analysis (DECA). This method decomposes a hyperspectral images into a collection of reflectance (or radiance) spectra of the materials present in the scene (endmember signatures) and the corresponding abundance fractions at each pixel. DECA assumes that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. These abudances are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. This method overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most effective therapeutic option for managing nonmuscle invasive bladder cancer (NMIBC), over the last 30 years, consists of intravesical instillations with the attenuated strain Bacillus Calmette-Gu´erin (the BCG vaccine). This has been performed as an adjuvant therapeutic to transurethral resection of bladder tumour (TURBT) and mostly directed towards patients with highgrade tumours, T1 tumours, and in situ carcinomas. However, from 20% to 40% of the patients do not respond and frequently present tumour progression. Since BCG effectiveness is unpredictable, it is important to find consistent biomarkers that can aid either in the prediction of the outcome and/or side effects development. Accordingly, we conducted a systematic critical review to identify themost preeminent predictive molecular markers associated with BCG response. To the best of our knowledge, this is the first review exclusively focusing on predictive biomarkers for BCG treatment outcome. Using a specific query, 1324 abstracts were gathered, then inclusion/exclusion criteria were applied, and finally 87 manuscripts were included. Several molecules, including CD68 and genetic polymorphisms, have been identified as promising surrogate biomarkers. Combinatory analysis of the candidate predictive markers is a crucial step to create a predictive profile of treatment response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared the indirect immunofluorescence assay (IFA) with Western blot (Wb) as a confirmatory method to detect antibodies anti retrovirus (HIV-1 and HTLV-I/II). Positive and negative HIV-1 and HTLV-I/II serum samples from different risk populations were studied. Sensitivity, specificity, positive, negative predictive and kappa index values were assayed, to assess the IFA efficiency versus Wb. The following cell lines were used as a source of viral antigens: H9 ( HTLV-III b); MT-2 and MT-4 (persistently infected with HTLV-I) and MO-T (persistently infected with HTLV-II). Sensitivity and specificity rates for HIV-1 were 96.80% and 98.60% respectively, while predictive positive and negative values were 99.50% and 92.00% respectively. No differences were found in HIV IFA performance between the various populations studied. As for IFA HTLV system, the sensitivity and specificity values were 97.91% and 100% respectively with positive and negative predictive values of 100% and 97.92%. Moreover, the sensitivity of the IFA for HTLV-I/II proved to be higher when the samples were tested simultaneously against both antigens (HTLV-I-MT-2 and HTLV-II-MO-T). The overall IFA efficiency for HIV-1 and HTLV-I/II-MT-2 antibody detection probed to be very satisfactory with an excellent correlation with Wb (Kappa indexes 0.93 and 0.98 respectively). These results confirmed that the IFA is a sensitive and specific alternative method for the confirmatory diagnosis of HIV-1 and HTLV-I/II infection in populations at different levels of risk to acquire the infection and suggest that IFA could be included in the serologic diagnostic algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Lamivudine has been shown to be an efficient drug for chronic hepatitis B (CHB) treatment. AIM: To investigate predictive factors of response, using a quantitative method with high sensitivity. METHODS: We carried out a prospective trial of lamivudine in 35 patients with CHB and evidence for viral replication, regardless to their HBeAg status. Lamivudine was given for 12 months at 300 mg daily and 150 mg thereafter. Response was considered when DNA was undetectable by PCR after 6 months of treatment. Viral replication was monitored by end-point dilution PCR. Mutation associated with resistance to lamivudine was detected by DNA sequencing in non-responder patients. RESULTS: Response was observed in 23/35 patients (65.7%) but only in 5/15 (33.3%) HBeAg positive patients. Only three pre-treatment variables were associated to low response: HBeAg (p = 0.006), high viral load (DNA-VHB > 3 x 10(6) copies/ml) (p = 0.004) and liver HBcAg (p = 0.0028). YMDD mutations were detected in 7/11 non-responder patients. CONCLUSIONS: HBeAg positive patients with high viral load show a high risk for developing drug resistance. On the other hand, HBeAg negative patients show a good response to lamivudine even with high viremia.