996 resultados para polystyrene-bound Schiff base
Resumo:
Residue replacements were made at five positions (Arg-73, Asp-76, Tyr-87, Asp-106, and Asp-201) in the Halobacterium salinarium phototaxis receptor sensory rhodopsin I (SR-I) by site-specific mutagenesis. The sites were chosen for their correspondence in position to residues of functional importance in the homologous light-driven proton pump bacteriorhodopsin found in the same organism. This work identifies a residue in SR-I shown to be of vital importance to its attractant signaling function: Asp-201. The effect of the substitution with the isosteric asparagine is to convert the normally attractant signal of orange light stimulation to a repellent signal. In contrast, similar neutral substitution of the four other ionizable residues near the photoactive site allows essentially normal attractant and repellent phototaxis signaling. Wild-type two-photon repellent signaling by the receptor is intact in the Asp-201 mutant, genetically separating the wild-type attractant and repellent signal generation processes. A possible explanation and implications of the inverted signaling are discussed. Results of neutral residue substitution for Asp-76 confirm our previous evidence that proton transfer reactions involving this residue are not important to phototaxis but that Asp-76 functions as the Schiff base proton acceptor in proton translocation by transducer-free SR-I.
Resumo:
Diferentes complexos de cobre(II), contendo ligantes do tipo base de Schiff e um grupamento imidazólico, com interesse bioinorgânico, catalítico e como novos materiais, foram preparados na forma de sais perclorato, nitrato ou cloreto e caracterizados através de diferentes técnicas espectroscópicas (UV/Vis, IR, EPR, Raman) e espectrometria de massa Tandem (ESI-MS/MS), além de análise elementar, condutividade molar e medidas de propriedades magnéticas. Alguns destes compostos, obtidos como cristais adequados, tiveram suas estruturas determinadas por cristalografia de raios-X. As espécies di- e polinucleares contendo pontes cloreto, mostraram desdobramentos das hiperfinas nos espectros de EPR, relacionados à presença do equilíbrio com a respectiva espécie mononuclear, devido à labilidade dos íons cloretos, dependendo do contra-íon e do tipo de solvente utilizado. Adicionalmente, em solução alcalina, estes compostos estão em equilíbrio com as correspondentes espécies polinucleares, onde os centros de cobre estão ligados através de um ligante imidazolato. Em meio alcalino, estes compostos polinucleares contendo ponte imidazolato foram também isolados e caracterizados por diferentes técnicas espectroscópicas e magnéticas. Através da variação estrutural e também do ligante-ponte foi possível modular o fenômeno da interação magnética entre os íons de cobre em estruturas correlatas di- e polinucleares. Os respectivos parâmetros magnéticos foram obtidos com ajuste das curvas experimentais de XM vs T, correlacionando-se muito bem com a geometria, ângulos e distâncias de ligação entre os íons, quando comparado com outros complexos similares descritos na literatura. Posteriormente, estudaram-se os fatores relacionados com a reatividade de todas essas espécies como catalisadores na oxidação de substratos de interesse (fenóis e aminas), através da variação do tamanho da cavidade nas estruturas cíclicas ou de variações no ligante coordenado ao redor do íon metálico. Vários deles se mostraram bons miméticos de tirosinases e catecol oxidases. Um novo complexo-modelo da citocromo c oxidase (CcO), utilizando a protoporfirina IX condensada ao quelato N,N,-bis[2-(1,2-metilbenzimidazolil)etil]amino e ao resíduo de glicil-L-histidina, foi sintetizado e caracterizado através de diferentes técnicas espectroscópicas, especialmente EPR. A adição de H2O2 ao sistema completamente oxidado, FeIII/CuII, a -55°C, ou o borbulhamento de oxigênio molecular a uma solução do complexo na sua forma reduzida, FeII/CuI, saturada de CO, resultou na formação de adutos com O2, de baixo spin, estáveis a baixas temperaturas.
Resumo:
The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing three reactions: intramolecular rearrangement, hydrolysis, and intermolecular reactions with proteins leading to covalent drug-protein adducts. This essential dogma has been accepted for over a decade. The key question proposed by researchers, and now the pharmaceutical industry, is: does or can the covalent modification of endogenous proteins, mediated by reactive acyl glucuronide metabolites, lead to adverse drug reactions, perhaps idiosyncratic in nature? This review evaluates the evidence for acyl glucuronide-derived perturbation of homeostasis, particularly that which might result from the covalent modification of endogenous proteins and other macromolecules. Because of the availability of acyl glucuronides for test tube/in vitro experiments, there is now a substantial literature documenting their rearrangement, hydrolysis and covalent modification of proteins in vitro. It is certain from in vitro experiments that serum albumin, dipeptidyl peptidase IV, tubulin and UGTs are covalently modified by acyl glucuronides. However, these in vitro experiments have been specifically designed to amplify any interference with a biological process in order to find biological effects. The in vivo situation is not at all clear. Certainly it must be concluded that all humans taking carboxylate drugs that form reactive acyl glucuronides will form covalent drug-protein adducts, and it must also be concluded that this in itself is normally benign. However, there is enough in vivo evidence implicating acyl glucuronides, which, when backed up by in vivo circumstantial and documented in vitro evidence, supports the view that reactive acyl glucuronides may initiate toxicity/immune responses. In summary, though acyl glucuronide-derived covalent modification of endogenous macromolecules is well-defined, the work ahead needs to provide detailed links between such modification and its possible biological consequences. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
A binucleating potentially hexadentate chelating agent containing oxygen, nitrogen and sulfur as potential donor atoms (H2ONNO) has been synthesized by condensing alpha,alpha-xylenebis(N-methyldithiocarbazate) with 2,4-pentanedione. An X-ray crystallographic structure determination shows that the Schiff base remains in its ketoimine tautomeric form with the protons attached to the imine nitrogen atoms. The reaction of the Schiff base with nickel(II) acetate in a 1:1 stoichiometry leads to the formation of a dinuclear nickel(II) complex [Ni(ONNO)](2) (ONNO2- = dianionic form of the Schiff base) containing N,O-chelated tetradentate ligands, the sulfur donors remaining uncoordinated. A single crystal X-ray structure determination of this dimer reveals that each ligand binds two low spin nickel(II) ions, bridged by a xylyl group. The nickel(II) atoms adopt a distorted square-planar geometry in a trans-N2O2 donor environment. Reaction of the Schiff base with nickel(II) acetate in the presence of excess pyridine leads to the formation of a similar dinuclear complex, [Ni(ONNO)(py)](2), but in this case comprises five coordinate high-spin Ni(II) ions with pyridine ligands occupying the axial coordination sites as revealed by X-ray crystallographic analysis. (c) 2005 Published by Elsevier B.V.
Resumo:
New copper(II) complexes of general empirical formula, Cu(mpsme)X center dot xCH(3)COCH(3) (mpsme = anionic form of the 6-methyl-2-formylpyridine Schiff base of S-methyldithiocarbazate; X = Cl, N-3, NCS, NO3; x = 0, 0.5) have been synthesized and characterized by IR, electronic, EPR and susceptibility measurements. Room temperature mu(eff) values for the complexes are in the range 1.75-2.1 mu(beta) typical of uncoupled or weakly coupled Cu(II) centres. The EPR spectra of the [Cu(mpsme)X] (X = Cl, N-3, NO3, NCS) complexes reveal a tetragonally distorted coordination sphere around the mononuclear Cu(II) centre. We have exploited second derivative EPR spectra in conjunction with Fourier filtering (sine bell and Hamming functions) to extract all of the nitrogen hyperfine coupling matrices. While the X-ray crystallography of [Cu(mpsme)NCS] reveals a linear polymer in which the thiocyanate anion bridges the two copper(II) ions, the EPR spectra in solution are typical of a magnetically isolated monomeric Cu(II) centres indicating dissociation of the polymeric chain in solution. The structures of the free ligand, Hmpsme and the {[Cu(mpsme)NO3] center dot 0.5CH(3)COCH(3)}(2) and [Cu(mpsme)NCS](n) complexes have been determined by X-ray diffraction. The {[Cu(mpsme)NO3]0.5CH(3)COCH(3)}(2) complex is a centrosymmetric dimer in which each copper atom adopts a five-coordinate distorted square-pyramidal geometry with an N2OS2 coordination environment, the Schiff base coordinating as a uninegatively charged tridentate ligand chelating through the pyridine and azomethine nitrogen atoms and the thiolate, an oxygen atom of a unidentate nitrato ligand and a bridging sulfur atom from the second ligand completing the coordination sphere. The [Cu(mpsme)(NCS)](n) complex has a novel staircase-like one dimensional polymeric structure in which the NCS- ligands bridge two adjacent copper(II) ions asymmetrically in an end-to-end fashion providing its nitrogen atom to one copper and the sulfur atom to the other. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The twin goals of low and efficient fuel use and minimum emissions are increasingly being addressed by research in both the motor and the catalyst industries of the world. This study was designed to attempt to investigate these goals. For diesel engine vehicles, this can be achieved by improving the efficiency of the fuel combustion in the combustion chamber. By having a suitable oxidation catalyst in the fuel one would expect the efficiency of the fuel combustion to be increased and fewer partial oxidation products to be formed. Also by placing a catalyst converter in the exhaust system partial oxidation products may be converted to more desirable final products. Finally, in this research the net catalytic effect of using an additive treated fuel and a blank ceramic monolith to trap the metal in the exhaust gases for potential use as catalytic converter was investigated. Suitable metal additives must yield a stable solution in the fuel tank. That is, they should not react with the air, water and rust that are always present. The research was targeted on the synthesis of hydrocarbon-soluble complexes that might exhibit unusually slow rates of ligand substitution. For materials containing metal ions, these properties are best met by using multi-dentate ligands that form neutral complexes. Metal complexes have been synthesised using acetylacetone derivatives, schiff base ligands and macrocyclic polyamine ligands, as potential pro-oxidant additives. Their thermal stabilities were also investigated using a differential thermal analysis instrument. The complexes were then investigated as potential additives for use in diesel fuel. The tests were conducted under controlled conditions using a diesel combustion bomb simulating the combustion process in the D.I. diesel engine, a test bed engine, and a vehicle engine.
Resumo:
A series of manganese(II) [Mn(L)] and manganese(III) [Mn(L)(X)] (X = ClO4, OAc, NCS, N3, Cl, Br and I) complexes have been synthesized from Schiff base ligands N,N′-o- phenylenebis(salicylideneimine)(LH2) and N,N′-o-phenylenebis(5- bromosalicylideneimine)(L′H2) obtained by condensation of salicylaldehyde or 5-Br salicylaldehyde with o-phenylene-diamine. The complexes have been characterized by the combination of IR, UV-Vis spectroscopy, magnetic measurements and electrochemical studies. Three manganese(III) complexes 3 [Mn(L)(ClO4)(H2O)], 5 [Mn(L)(OAc)] and 13 [Mn(L)(NCS)] have been characterized by X-ray crystallography. The X-ray structures show that the manganese(III) is hexa-coordinated in 3, it is penta-coordinated in 13, while in 5 there is an infinite chain where the MnL moieties are connected by acetate ions acting as bridging bidentate ligand. The cyclic voltammograms of all the manganese(III) complexes exhibit two reversible/quasi-reversible/ irreversible responses assignable to Mn(III)/Mn(II) and Mn(IV)/Mn(III) couples. It was observed that the ligand L′H2 containing the 5-bromosal moiety always stabilizes the lower oxidation states compared to the corresponding unsubstituted LH2. Cyclic voltammograms of the manganese(II) complexes (1 and 2) exhibit a quasi-reversible Mn(III)/Mn(II) couple at E1/2 -0.08 V for 1 and 0.054 V for 2. © 2005 Elsevier B.V. All rights reserved.
Resumo:
In this chapter, selected results obtained so far on Fe(III) spin crossover compounds are summarized and discussed. Fe(III) spin transition materials of ligands containing chalcogen donor atoms are considered with emphasis on those of N,N-disubstituted-dithiocarbamates, N,N-disubstituted-XY-carbamates (XY=SO, SSe, SeSe), X-xanthates (X=O, S), monothio-β-diketonates and X-semicarbazones (X=S, Se). In addition, attention is directed to Fe(III) spin crossover systems of multidentate Schiff base-type ligands. Examples of spin inter-conversion in Fe(III) compounds induced by light irradiation are given.
Resumo:
The reaction of the Schiff base (3,5-di-tert-butyl-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H3L) with a copper(II) salt of a base of a strong acid, i.e., nitrate, chloride or sulphate, yielded the mononuclear complexes [Cu(H2L)(NO3)(H2O)] (1), [Cu(H2L)Cl]center dot 2MeOH (2) and the binuclear complex [{Cu(H2L)}(2)(mu-SO4)]center dot 2MeOH (3), respectively, with H2L- in the keto form. Compounds 1-3 were characterized by elemental analysis, Infrared (IR) spectroscopy, Electrospray Ionisation-Mass Spectrometry (ESI-MS) and single crystal X-ray crystallography. All compounds act as efficient catalysts towards the peroxidative oxidation of cyclohexane to cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone, under mild conditions. In the presence of an acid promoter, overall yields (based on the alkane) up to 25% and a turnover number (TON) of 250 (TOF of 42 h(-1)) after 6 h, were achieved.
Resumo:
Replication of human immunodeficiency virus (HIV) requires base pairing of the reverse transcriptase primer, human tRNA(Lys3), to the viral RNA. Although the major complementary base pairing occurs between the HIV primer binding sequence (PBS) and the tRNA's 3'-terminus, an important discriminatory, secondary contact occurs between the viral A-rich Loop I, 5'-adjacent to the PBS, and the modified, U-rich anticodon domain of tRNA(Lys3). The importance of individual and combined anticodon modifications to the tRNA/HIV-1 Loop I RNA's interaction was determined. The thermal stabilities of variously modified tRNA anticodon region sequences bound to the Loop I of viral sub(sero)types G and B were analyzed and the structure of one duplex containing two modified nucleosides was determined using NMR spectroscopy and restrained molecular dynamics. The modifications 2-thiouridine, s(2)U(34), and pseudouridine, Psi(39), appreciably stabilized the interaction of the anticodon region with the viral subtype G and B RNAs. The structure of the duplex results in two coaxially stacked A-form RNA stems separated by two mismatched base pairs, U(162)*Psi(39) and G(163)*A(38), that maintained a reasonable A-form helix diameter. The tRNA's s(2)U(34) stabilized the interaction between the A-rich HIV Loop I sequence and the U-rich anticodon, whereas the tRNA's Psi(39) stabilized the adjacent mismatched pairs.
Resumo:
Ultra-trace amounts of Cu(II) were separated and preconcentrated by solid phase extraction on octadecyl-bonded silica membrane disks modified with a new Schiff,s base (Bis- (2-Hydroxyacetophenone) -2,2-dimethyl-1,3-propanediimine) (SBTD) followed by elution and inductively coupled plasma atomic emission spectrometric detection. The method was applied as a separation and detection method for copper(II) in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The concentration factor and detection limit of the proposed method are 500 and 12.5 pg mL-1, respectively.
Resumo:
Two simple sensitive and reproducible spectrophotometric methods have been developed for the determination of metronidazole either in pure form or in their tablets. The proposed methods are based on the reduction of the nitro group to amino group of the drug. The reduction of metronidazole was carried out with zinc powder and 5 N hydrochloric acid at room temperature in methanol. The resulting amine was then subjected to a condensation reaction with aromatic aldehyde namely, vanillin and p-dimethyl amino benzaldehyde (PDAB) to yield yellow colored Schiff's bases. The formed Schiff's bases are quantified spectrophotometrically at their absorption maxima at 422 nm for vanillin and 494 nm for PDAB. Beer's law was obeyed in the concentration ranges 10 to 65 µg mL-1 and 5 to 40 µg mL-1 with a limit of detection (LOD) of 0.080 µg mL-1 and 0.090 µg mL-1 for vanillin and PDAB, respectively. The mean percentage recoveries were found to be 100.05 ± 0.37 and 99.01 ± 0.76 for the two methods respectively. The proposed methods were successfully applied to determine the metronidazole in their tablet formulations and the results compared favorably to that of reference methods. The proposed methods are recommended for quality control and routine analysis.
Resumo:
Dissertação para obtenção do Grau de Doutor em Sistemas de Bioengenharia
Resumo:
We show that small amounts of 3He atoms, added to a 4He drop deposited on a flat cesium surface at zero temperature, populate bound states localized at the contact line. These edge states show up for drops large enough to develop well defined surface and bulk regions together with a contact line, and they are structurally different from the well-known Andreev states that appear at the free surface and at the liquid-solid interface of films. We illustrate the one-body density of 3He in a drop with 1000 4He atoms, and show that for a sufficiently large number of impurities the density profiles spread beyond the edge, coating both the curved drop surface and its flat base and eventually isolating it from the substrate.