900 resultados para oxidized nanotubes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of nanoscale low-dimensional systems could boost the sensitivity of gas sensors. In this work we simulate a nanoscopic sensor based on carbon nanotubes with a large number of binding sites using ab initio density functional electronic structure calculations coupled to the Non-Equilibrium Green's Function formalism. We present a recipe where the adsorption process is studied followed by conductance calculations of a single defect system and of more realistic disordered system considering different coverages of molecules as one would expect experimentally. We found that the sensitivity of the disordered system is enhanced by a factor of 5 when compared to the single defect one. Finally, our results from the atomistic electronic transport are used as input to a simple model that connects them to experimental parameters such as temperature and partial gas pressure, providing a procedure for simulating a realistic nanoscopic gas sensor. Using this methodology we show that nitrogen-rich carbon nanotubes could work at room temperature with extremely high sensitivity. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4739280]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interesting method to investigate the effect of fuel crossover in low temperature fuel cells consists of studying the open circuit interaction between the reducing fuel and an oxide-covered catalyst. Herein we report the experimental study of the open circuit interaction between borohydride and oxidized platinum surfaces in alkaline media. When compared to the case of hydrogen and other small organic molecules, two remarkable new features were observed. Firstly, the interaction with borohydride resulted in a very-fast reduction process with transient times about two to three orders of magnitude smaller. The second peculiarity was that the decrease of the open circuit potential was found to occur in two-stages and this, previously unseen, feature was correlated with the two-hump profile found in the backward sweep in the cyclic voltammogram The consequences of our findings are discussed in connection with fundamental and applied aspects. (C) 2011 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive electrochemical acetylcholinesterase (AChE) biosensor was successfully developed on polyaniline (PANI) and multi-walled carbon nanotubes (MWCNTs) core-shell modified glassy carbon electrode (GC), and used to detect carbamate pesticides in fruit and vegetables (apple, broccoli and cabbage). The pesticide biosensors were applied in the detection of carbaryl and methomyl pesticides in food samples using chronoamperometry (CA). The GC/MWCNT/PANI/AChE biosensor exhibited detection limits of 1.4 and 0.95 mu mol L-1, respectively, for carbaryl and methomyl. These detection limits were below the allowable concentrations set by Brazilian regulation standards for the samples in which these pesticides were analysed. Reproducibility and repeatability values of 2.6% and 3.2%, respectively, were obtained in the conventional procedure. The proposed biosensor was successfully applied in the determination of carbamate pesticides in cabbage, broccoli and apple samples without any spiking procedure. The obtained results were in full agreement with those from the HPLC procedure. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiwall carbon nanotube/silicone rubber (MWCNT/SR) composite electrode has been used for the determination of hydrochlorothiazide (HCTZ) in pharmaceutical formulations by differential pulse voltammetry (DPV). The electro-oxidation process was evaluated by cyclic voltammetry, from which it was observed that HCTZ presents an irreversible oxidation peak at 0.82 V vs. saturated calomel electrode (SCE) in the potential range from 0.5 to 1.1 V, in Britton-Robinson buffer pH 7.0 at MWCNT/SR. HCTZ was determined by DPV using a MWCNT/SR 70% (MWCNT, m/m) composite electrode after the optimization of the experimental parameters. The linear range was from 5.0 to 70.0 mu mol L-1, with a limit of detection (LOD) of 2.6 mu mol L-1. The HCTZ was determined in pharmaceutical formulations using the proposed composite electrode and the results agreed with those from the official high performance liquid chromatography (HPLC) method within 95% confidence level, according to the t-Student test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Metabolic predictors and the atherogenicity of oxidized LDL (oxLDL) and the specific antibodies against oxLDL (oxLDL Ab) are unclear and controversial. Methods: In 107 adults without atherosclerotic manifestations, we measured oxLDL and oxLDL Ab, and also the activities of CETP. PLTP, lipases and the carotid intima-media thickness (cIMT). Comparisons were performed for the studied parameters between the lowest and the highest tertile of oxLDL and oxLDL Ab, and the relationships between studied variables were evaluated. Results: Subjects with higher oxLDL Ab present reduced hepatic lipase activity and borderline increased cIMT. In the highest oxLDL tertile, besides the higher levels of total cholesterol, LDL-C and apoB100, we found reduced CETP activity and higher cIMT. A significant correlation between oxLDL Ab and cIMT, independent of oxLDL, and a borderline correlation between oxLDL and cIMT independent of oxLDL Ab were found. In the multivariate analysis, apoAl was a significant predictor of oxLDL Ab, in contrast to regulation of oxLDL by apoB100, PLTP and inverse of CETP. Conclusions: In adults without atherosclerotic disease, the metabolic regulation and carotid atherosclerosis of oxLDLAb and oxLDL groups, characterized a dual trait in oxLDL Ab, as a contributor to carotid atherosclerosis, much less so than oxidized LDL, and with a modest atheroprotective role. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a novel material for the electrochemical determination of bisphenol A using a nanocomposite based on multi-walled carbon nanotubes modified with antimony nanoparticles has been investigated. The morphology, structure, and electrochemical performance of the nanocomposite electrodes were characterised by field emission gun scanning electron microscopy, energy-dispersive X-ray spectroscopy, and cyclic voltammetry. A scan rate study and electrochemical impedance spectroscopy showed that the bisphenol A oxidation product is adsorbed on nanocomposite electrode surface. Differential pulse voltammetry in phosphate buffer solution at pH 6, allowed the development of a method to determine bisphenol A levels in the range of 0.5-5.0 mu mol L-1, with a detection limit of 5.24 nmol L-1 (1.19 mu g L-1). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of silver-gold nanotubes containing hot spots along their surface. The Ag-Au nanotubes exhibited exceptional SERS properties compared to silver nanowires, enabling the detection of crystal violet in the 10(-10) M regime, as well as 9-nitroanthracene and benzo[a] pyrene at 3.3 x 10(-7) M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vanadium oxide nanotubes constitute promising materials for applications in nanoelectronics as cathode materials, in sensor technology and in catalysis. In this work we present a study on hybrid vanadium oxide/hexadecylamine multiwall nanotubes doped with Co ions using state of the art x-ray diffraction and absorption techniques, to address the issue of the dopant location within the nanotubes' structure. The x-ray absorption near-edge structure analysis shows that the Co ions in the nanotubes are in the 2+ oxidation state, while extended x-ray absorption fine structure spectroscopy reveals the local environment of the Co2+ ions. Results indicate that Co atoms are exchanged at the interface between the vanadium oxide's layers and the hexadecylamines, reducing the amount of amine chains and therefore the interlayer distance, but preserving the tubular shape. The findings in this work are important for describing Co2+ interaction with vanadium oxide nanotubes at the molecular level and will help to improve the understanding of their physicochemical behavior, which is desired in view of their promising applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite fibers based on multi-walled carbon nanotubes (MWCNT) and poly(lactic acid) (PLA) were prepared by solution blow spinning (SBS). Fiber morphology was characterized by scanning electron microscopy (SEM) and optical microscopy (OM). Electrical, thermal, surface and crystalline properties of the spun fibers were evaluated, respectively, by conductivity measurements (4-point probe), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), contact angle and X-ray diffraction (XRD). OM analysis of the spun mats showed a poor dispersion of MWCNT in the matrix, however dispersion in solution was increased during spinning where droplets of PLA in solution loaded with MWCNT were pulled by the pressure drop at the nozzle, producing PLA fibers filled with MWCNT. Good electrical conductivity and hydrophobicity can be achieved at low carbon nanotube contents. When only 1 wt% MWCNT was added to low-crystalline PLA, surface conductivity of the composites increased from 5 x 10(-8) to 0.46 S/cm. Addition of MWCNT can slightly influence the degree of crystallinity of PLA fibers as studied by XRD and DSC. Thermogravimetric analyses showed that MWCNT loading can decrease the onset degradation temperature of the composites which was attributed to the catalytic effect of metallic residues in MWCNT. Moreover, it was demonstrated that hydrophilicity slightly increased with an increase in MWCNT content. These results show that solution blow spinning can also be used to produce nanocomposite fibers with many potential applications such as in sensors and biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years, extensive research has been devoted to develop novel materials and structures with high electrochemical performance for intermediate-temperatures solid-oxide fuel cells (IT-SOFCs) electrodes. In recent works, we have investigated the structural and electrochemical properties of La0:6Sr0:4CoO3 (LSCO) and La0:6Sr0:4Co1¡yFeyO3 (LSCFO) nanostructured cathodes, finding that they exhibit excellent electrocatalytic properties for the oxygen reduction reaction [1,2]. These materials were prepared by a pore-wetting technique using polycarbonate porous membranes as templates. Two average pore sizes were used: 200 nm and 800 nm. Our scanning electronic microscopy (SEM) study showed that the lower pore size yielded nanorods, while nanotubes were obtained with the bigger pore size. All the samples were calcined at 1000oC in order to produce materials with the desired perovskite-type crystal structure. In this work, we analyze the oxidation states of Co and Fe and the local atomic order of LSCO and LSCFO nanotubes and nanowires for various compositions. For this pur- pose we performed XANES and EXAFS studies on both Co and Fe K edges. These measurements were carried out at the D08B-XAFS2 beamline of the Brazilian Synchrotron Light Laboratory (LNLS). XANES spectroscopy showed that Co and Fe only change slightly their oxidation state upon Fe addition. Surprisingly, XANES results indicated that the content of oxygen vacancies is low, even though it is well-known that these materials are mixed ionic-electronic conductors. EXAFS results were consistent with those expected according to the rhombohedral crystal structure determined in previous X-ray powder dffraction investigations. [1] M.G. Bellino et al, J. Am. Chem. Soc. 129 (2007) 3066 [2] J.G. Sacanell et al., J. Power Sources 195 (2010) 1786

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid materials with enhanced properties can now be obtained by combining nanomaterials such as carbon nanotubes and metallic nanoparticles, where the main challenge is to control fabrication conditions. In this study, we demonstrate that platinum nanoparticles (PtNps) can be electrogenerated within layer-by-layer (LbL) films of polyamidoamine (PAMAM) dendrimers and single-walled carbon nanotubes (SWCNTs), which serve as stabilizing matrices. The advantages of the possible control through electrogeneration were demonstrated with a homogeneous distribution of PtNps over the entire surface of the PAMAM/SWCNT LbL films, whose electroactive sites could be mapped using magnetic force microscopy. The Pt-containing films were used as catalysts for hydrogen peroxide reduction, with a decrease in the reduction potential of 60 mV compared to a Pt film deposited onto bare ITO. By analyzing the mechanisms responsible for hydrogen peroxide reduction, we ascribed the enhanced catalytic activity to synergistic effects between platinum and carbon in the LbL films, which are promising for sensing and fuel cell applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aims of my PhD research work have been the investigation of the redox, photophysical and electronic properties of carbon nanotubes (CNT) and their possible uses as functional substrates for the (electro)catalytic production of oxygen and as molecular connectors for Quantum-dot Molecular Automata. While for CNT many and diverse applications in electronics, in sensors and biosensors field, as a structural reinforcing in composite materials have long been proposed, the study of their properties as individual species has been for long a challenging task. CNT are in fact virtually insoluble in any solvent and, for years, most of the studies has been carried out on bulk samples (bundles). In Chapter 2 an appropriate description of carbon nanotubes is reported, about their production methods and the functionalization strategies for their solubilization. In Chapter 3 an extensive voltammetric and vis-NIR spectroelectrochemical investigation of true solutions of unfunctionalized individual single wall CNT (SWNT) is reported that permitted to determine for the first time the standard electrochemical potentials of reduction and oxidation as a function of the tube diameter of a large number of semiconducting SWNTs. We also established the Fermi energy and the exciton binding energy for individual tubes in solution and, from the linear correlation found between the potentials and the optical transition energies, one to calculate the redox potentials of SWNTs that are insufficiently abundant or absent in the samples. In Chapter 4 we report on very efficient and stable nano-structured, oxygen-evolving anodes (OEA) that were obtained by the assembly of an oxygen evolving polyoxometalate cluster, (a totally inorganic ruthenium catalyst) with a conducting bed of multiwalled carbon nanotubes (MWCNT). Here, MWCNT were effectively used as carrier of the polyoxometallate for the electrocatalytic production of oxygen and turned out to greatly increase both the efficiency and stability of the device avoiding the release of the catalysts. Our bioinspired electrode addresses the major challenge of artificial photosynthesis, i.e. efficient water oxidation, taking us closer to when we might power the planet with carbon-free fuels. In Chapter 5 a study on surface-active chiral bis-ferrocenes conveniently designed in order to act as prototypical units for molecular computing devices is reported. Preliminary electrochemical studies in liquid environment demonstrated the capability of such molecules to enter three indistinguishable oxidation states. Side chains introduction allowed to organize them in the form of self-assembled monolayers (SAM) onto a surface and to study the molecular and redox properties on solid substrates. Electrochemical studies on SAMs of these molecules confirmed their attitude to undergo fast (Nernstian) electron transfer processes generating, in the positive potential region, either the full oxidized Fc+-Fc+ or the partly oxidized Fc+-Fc species. Finally, in Chapter 6 we report on a preliminary electrochemical study of graphene solutions prepared according to an original procedure recently described in the literature. Graphene is the newly-born of carbon nanomaterials and is certainly bound to be among the most promising materials for the next nanoelectronic generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit wurde die Elektronenemission von Nanopartikeln auf Oberflächen mittels spektroskopischen Photoelektronenmikroskopie untersucht. Speziell wurden metallische Nanocluster untersucht, als selbstorganisierte Ensembles auf Silizium oder Glassubstraten, sowie ferner ein Metall-Chalcogenid (MoS2) Nanoröhren-Prototyp auf Silizium. Der Hauptteil der Untersuchungen war auf die Wechselwirkung von fs-Laserstrahlung mit den Nanopartikeln konzentriert. Die Energie der Lichtquanten war kleiner als die Austrittsarbeit der untersuchten Proben, so dass Ein-Photonen-Photoemission ausgeschlossen werden konnte. Unsere Untersuchungen zeigten, dass ausgehend von einem kontinuierlichen Metallfilm bis hin zu Clusterfilmen ein anderer Emissionsmechanismus konkurrierend zur Multiphotonen-Photoemission auftritt und für kleine Cluster zu dominieren beginnt. Die Natur dieses neuen Mechanismus` wurde durch verschiedenartige Experimente untersucht. Der Übergang von einem kontinuierlichen zu einem Nanopartikelfilm ist begleitet von einer Zunahme des Emissionsstroms von mehr als eine Größenordnung. Die Photoemissions-Intensität wächst mit abnehmender zeitlicher Breite des Laserpulses, aber diese Abhängigkeit wird weniger steil mit sinkender Partikelgröße. Die experimentellen Resultate wurden durch verschiedene Elektronenemissions-Mechanismen erklärt, z.B. Multiphotonen-Photoemission (nPPE), thermionische Emission und thermisch unterstützte nPPE sowie optische Feldemission. Der erste Mechanismus überwiegt für kontinuierliche Filme und Partikel mit Größen oberhalb von mehreren zehn Nanometern, der zweite und dritte für Filme von Nanopartikeln von einer Größe von wenigen Nanometern. Die mikrospektroskopischen Messungen bestätigten den 2PPE-Emissionsmechanismus von dünnen Silberfilmen bei „blauer“ Laseranregung (hν=375-425nm). Das Einsetzen des Ferminiveaus ist relativ scharf und verschiebt sich um 2hν, wenn die Quantenenergie erhöht wird, wogegen es bei „roter“ Laseranregung (hν=750-850nm) deutlich verbreitert ist. Es zeigte sich, dass mit zunehmender Laserleistung die Ausbeute von niederenergetischen Elektronen schwächer zunimmt als die Ausbeute von höherenergetischen Elektronen nahe der Fermikante in einem Spektrum. Das ist ein klarer Hinweis auf eine Koexistenz verschiedener Emissionsmechanismen in einem Spektrum. Um die Größenabhängigkeit des Emissionsverhaltens theoretisch zu verstehen, wurde ein statistischer Zugang zur Lichtabsorption kleiner Metallpartikel abgeleitet und diskutiert. Die Elektronenemissionseigenschaften bei Laseranregung wurden in zusätzlichen Untersuchungen mit einer anderen Anregungsart verglichen, der Passage eines Tunnelstroms durch einen Metall-Clusterfilm nahe der Perkolationsschwelle. Die elektrischen und Emissionseigenschaften von stromtragenden Silberclusterfilmen, welche in einer schmalen Lücke (5-25 µm Breite) zwischen Silberkontakten auf einem Isolator hergestellt wurden, wurden zum ersten Mal mit einem Emissions-Elektronenmikroskop (EEM) untersucht. Die Elektronenemission beginnt im nicht-Ohmschen Bereich der Leitungsstrom-Spannungskurve des Clusterfilms. Wir untersuchten das Verhalten eines einzigen Emissionszentrums im EEM. Es zeigte sich, dass die Emissionszentren in einem stromleitenden Silberclusterfilm Punktquellen für Elektronen sind, welche hohe Emissions-Stromdichten (mehr als 100 A/cm2) tragen können. Die Breite der Energieverteilung der Elektronen von einem einzelnen Emissionszentrum wurde auf etwa 0.5-0.6 eV abgeschätzt. Als Emissionsmechanismus wird die thermionische Emission von dem „steady-state“ heißen Elektronengas in stromdurchflossenen metallischen Partikeln vorgeschlagen. Größenselektierte, einzelne auf Si-Substraten deponierte MoS2-Nanoröhren wurden mit einer Flugzeit-basierten Zweiphotonen-Photoemissions-Spektromikroskopie untersucht. Die Nanoröhren-Spektren wiesen bei fs-Laser Anregung eine erstaunlich hohe Emissionsintensität auf, deutlich höher als die SiOx Substratoberfläche. Dagegen waren die Röhren unsichtbar bei VUV-Anregung bei hν=21.2 eV. Eine ab-initio-Rechnung für einen MoS2-Slab erklärt die hohe Intensität durch eine hohe Dichte freier intermediärer Zustände beim Zweiphotonen-Übergang bei hν=3.1 eV.