975 resultados para markov chains monte carlo methods
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here.
Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.
One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.
Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.
In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.
Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data.
The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.
Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
A dissertation submitted in fulfillment of the requirements to the degree of Master in Computer Science and Computer Engineering
Resumo:
The recent advent of new technologies has led to huge amounts of genomic data. With these data come new opportunities to understand biological cellular processes underlying hidden regulation mechanisms and to identify disease related biomarkers for informative diagnostics. However, extracting biological insights from the immense amounts of genomic data is a challenging task. Therefore, effective and efficient computational techniques are needed to analyze and interpret genomic data. In this thesis, novel computational methods are proposed to address such challenges: a Bayesian mixture model, an extended Bayesian mixture model, and an Eigen-brain approach. The Bayesian mixture framework involves integration of the Bayesian network and the Gaussian mixture model. Based on the proposed framework and its conjunction with K-means clustering and principal component analysis (PCA), biological insights are derived such as context specific/dependent relationships and nested structures within microarray where biological replicates are encapsulated. The Bayesian mixture framework is then extended to explore posterior distributions of network space by incorporating a Markov chain Monte Carlo (MCMC) model. The extended Bayesian mixture model summarizes the sampled network structures by extracting biologically meaningful features. Finally, an Eigen-brain approach is proposed to analyze in situ hybridization data for the identification of the cell-type specific genes, which can be useful for informative blood diagnostics. Computational results with region-based clustering reveals the critical evidence for the consistency with brain anatomical structure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dissertação (Mestrado em Tecnologia Nuclear)
Resumo:
Dissertação (Mestrado em Tecnologia Nuclear)
Resumo:
Ultracold gases provide an ideal platform for quantum simulations of many-body systems. Here we are interested in a particular system which has been the focus of most experimental and theoretical works on ultracold fermionic gases: the unitary Fermi gas. In this work we study with Quantum Monte Carlo simulations a two-component gas of fermionic atoms at zero temperature in the unitary regime. Specifically, we are interested in studying how the effective masses for the quasi-particles of the two components of the Fermi liquid evolve as the polarization is progressively reduced from full to lower values. A recent theoretical work, based on alternative diagrammatic methods, has indeed suggested that such effective masses should diverge at a critical polarization. To independently verify such predictions, we perform Variational Monte Carlo (VMC) calculations of the energy based on Jastrow-Slater wavefunctions after adding or subtracting a particle with a given momentum to a full Fermi sphere. In this way, we determine the quasi-particle dispersions, from which we extract the effective masses for different polarizations. The resulting effective masses turn out to be quite close to the non-interacting values, even though some evidence of an increase for the effective mass of the minority component appears close to the predicted value for the critical polarization. Preliminary results obtained for the majority component with the Fixed-node Diffusion Monte Carlo (DMC) method seem to indicate that DMC could lead to an increase of the effective masses in comparison with the VMC results. Finally, we point out further improvements of the trial wave-function and boundary conditions that would be necessary in future simulations to draw definite conclusions on the effective masses of the polarized unitary Fermi gas.
Resumo:
Monte Carlo track structures (MCTS) simulations have been recognized as useful tools for radiobiological modeling. However, the authors noticed several issues regarding the consistency of reported data. Therefore, in this work, they analyze the impact of various user defined parameters on simulated direct DNA damage yields. In addition, they draw attention to discrepancies in published literature in DNA strand break (SB) yields and selected methodologies. The MCTS code Geant4-DNA was used to compare radial dose profiles in a nanometer-scale region of interest (ROI) for photon sources of varying sizes and energies. Then, electron tracks of 0.28 keV-220 keV were superimposed on a geometric DNA model composed of 2.7 × 10(6) nucleosomes, and SBs were simulated according to four definitions based on energy deposits or energy transfers in DNA strand targets compared to a threshold energy ETH. The SB frequencies and complexities in nucleosomes as a function of incident electron energies were obtained. SBs were classified into higher order clusters such as single and double strand breaks (SSBs and DSBs) based on inter-SB distances and on the number of affected strands. Comparisons of different nonuniform dose distributions lacking charged particle equilibrium may lead to erroneous conclusions regarding the effect of energy on relative biological effectiveness. The energy transfer-based SB definitions give similar SB yields as the one based on energy deposit when ETH ≈ 10.79 eV, but deviate significantly for higher ETH values. Between 30 and 40 nucleosomes/Gy show at least one SB in the ROI. The number of nucleosomes that present a complex damage pattern of more than 2 SBs and the degree of complexity of the damage in these nucleosomes diminish as the incident electron energy increases. DNA damage classification into SSB and DSB is highly dependent on the definitions of these higher order structures and their implementations. The authors' show that, for the four studied models, different yields are expected by up to 54% for SSBs and by up to 32% for DSBs, as a function of the incident electrons energy and of the models being compared. MCTS simulations allow to compare direct DNA damage types and complexities induced by ionizing radiation. However, simulation results depend to a large degree on user-defined parameters, definitions, and algorithms such as: DNA model, dose distribution, SB definition, and the DNA damage clustering algorithm. These interdependencies should be well controlled during the simulations and explicitly reported when comparing results to experiments or calculations.
Resumo:
Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.
Resumo:
The n→π* absorption transition of formaldehyde in water is analyzed using combined and sequential classical Monte Carlo (MC) simulations and quantum mechanics (QM) calculations. MC simulations generate the liquid solute-solvent structures for subsequent QM calculations. Using time-dependent density functional theory in a localized set of gaussian basis functions (TD-DFT/6-311++G(d,p)) calculations are made on statistically relevant configurations to obtain the average solvatochromic shift. All results presented here use the electrostatic embedding of the solvent. The statistically converged average result obtained of 2300 cm-1 is compared to previous theoretical results available. Analysis is made of the effective dipole moment of the hydrogen-bonded shell and how it could be held responsible for the polarization of the solvent molecules in the outer solvation shells.
Resumo:
Background: Hepatitis C virus (HCV) is an important human pathogen affecting around 3% of the human population. In Brazil, it is estimated that there are approximately 2 to 3 million HCV chronic carriers. There are few reports of HCV prevalence in Rondonia State (RO), but it was estimated in 9.7% from 1999 to 2005. The aim of this study was to characterize HCV genotypes in 58 chronic HCV infected patients from Porto Velho, Rondonia (RO), Brazil. Methods: A fragment of 380 bp of NS5B region was amplified by nested PCR for genotyping analysis. Viral sequences were characterized by phylogenetic analysis using reference sequences obtained from the GenBank (n = 173). Sequences were aligned using Muscle software and edited in the SE-AL software. Phylogenetic analyses were conducted using Bayesian Markov chain Monte Carlo simulation (MCMC) to obtain the MCC tree using BEAST v. 1.5.3. Results: From 58 anti-HCV positive samples, 22 were positive to the NS5B fragment and successfully sequenced. Genotype 1b was the most prevalent in this population (50%), followed by 1a (27.2%), 2b (13.6%) and 3a (9.0%). Conclusions: This study is the first report of HCV genotypes from Rondonia State and subtype 1b was found to be the most prevalent. This subtype is mostly found among people who have a previous history of blood transfusion but more detailed studies with a larger number of patients are necessary to understand the HCV dynamics in the population of Rondonia State, Brazil.
Resumo:
Background: The Brazilian population is mainly descendant from European colonizers, Africans and Native Americans. Some Afro-descendants lived in small isolated communities since the slavery period. The epidemiological status of HBV infection in Quilombos communities from northeast of Brazil remains unknown. The aim of this study was to characterize the HBV genotypes circulating inside a Quilombo isolated community from Maranhao State, Brazil. Methods: Seventy-two samples from Frechal Quilombo community at Maranhao were collected. All serum samples were screened by enzyme-linked immunosorbent assays for the presence of hepatitis B surface antigen ( HBsAg). HBsAg positive samples were submitted to DNA extraction and a fragment of 1306 bp partially comprising HBsAg and polymerase coding regions (S/POL) was amplified by nested PCR and its nucleotide sequence was determined. Viral isolates were genotyped by phylogenetic analysis using reference sequences from each genotype obtained from GenBank (n = 320). Sequences were aligned using Muscle software and edited in the SE-AL software. Bayesian phylogenetic analyses were conducted using Markov Chain Monte Carlo (MCMC) method to obtain the MCC tree using BEAST v.1.5.3. Results: Of the 72 individuals, 9 (12.5%) were HBsAg-positive and 4 of them were successfully sequenced for the 1306 bp fragment. All these samples were genotype A1 and grouped together with other sequences reported from Brazil. Conclusions: The present study represents the first report on the HBV genotypes characterization of this community in the Maranhao state in Brazil where a high HBsAg frequency was found. In this study, we reported a high frequency of HBV infection and the exclusive presence of subgenotype A1 in an Afro-descendent community in the Maranhao State, Brazil.
Resumo:
Background: GB virus C (GBV-C) is an enveloped positive-sense ssRNA virus belonging to the Flaviviridae family. Studies on the genetic variability of the GBV-C reveals the existence of six genotypes: genotype 1 predominates in West Africa, genotype 2 in Europe and America, genotype 3 in Asia, genotype 4 in Southwest Asia, genotype 5 in South Africa and genotype 6 in Indonesia. The aim of this study was to determine the frequency and genotypic distribution of GBV-C in the Colombian population. Methods: Two groups were analyzed: i) 408 Colombian blood donors infected with HCV (n = 250) and HBV (n = 158) from Bogota and ii) 99 indigenous people with HBV infection from Leticia, Amazonas. A fragment of 344 bp from the 5' untranslated region (5' UTR) was amplified by nested RT PCR. Viral sequences were genotyped by phylogenetic analysis using reference sequences from each genotype obtained from GenBank (n = 160). Bayesian phylogenetic analyses were conducted using Markov chain Monte Carlo (MCMC) approach to obtain the MCC tree using BEAST v. 1.5.3. Results: Among blood donors, from 158 HBsAg positive samples, eight 5.06% (n = 8) were positive for GBV-C and from 250 anti-HCV positive samples, 3.2%(n = 8) were positive for GBV-C. Also, 7.7% (n = 7) GBV-C positive samples were found among indigenous people from Leticia. A phylogenetic analysis revealed the presence of the following GBV-C genotypes among blood donors: 2a (41.6%), 1 (33.3%), 3 (16.6%) and 2b (8.3%). All genotype 1 sequences were found in co-infection with HBV and 4/5 sequences genotype 2a were found in co-infection with HCV. All sequences from indigenous people from Leticia were classified as genotype 3. The presence of GBV-C infection was not correlated with the sex (p = 0.43), age (p = 0.38) or origin (p = 0.17). Conclusions: It was found a high frequency of GBV-C genotype 1 and 2 in blood donors. The presence of genotype 3 in indigenous population was previously reported from Santa Marta region in Colombia and in native people from Venezuela and Bolivia. This fact may be correlated to the ancient movements of Asian people to South America a long time ago.