938 resultados para k-means clustering
Resumo:
Resumen tomado de la publicaci??n
Resumo:
The k-means cluster technique is used to examine 43 yr of daily winter Northern Hemisphere (NH) polar stratospheric data from the 40-yr ECMWF Re-Analysis (ERA-40). The results show that the NH winter stratosphere exists in two natural well-separated states. In total, 10% of the analyzed days exhibit a warm disturbed state that is typical of sudden stratospheric warming events. The remaining 90% of the days are in a state typical of a colder undisturbed vortex. These states are determined objectively, with no preconceived notion of the groups. The two stratospheric states are described and compared with alternative indicators of the polar winter flow, such as the northern annular mode. It is shown that the zonally averaged zonal winds in the polar upper stratosphere at 7 hPa can best distinguish between the two states, using a threshold value of 4 m s−1, which is remarkably close to the standard WMO criterion for major warming events. The analysis also determines that there are no further divisions within the warm state, indicating that there is no well-designated threshold between major and minor warmings, nor between split and displaced vortex events. These different manifestations are simply members of a continuum of warming events.
Resumo:
A fast backward elimination algorithm is introduced based on a QR decomposition and Givens transformations to prune radial-basis-function networks. Nodes are sequentially removed using an increment of error variance criterion. The procedure is terminated by using a prediction risk criterion so as to obtain a model structure with good generalisation properties. The algorithm can be used to postprocess radial basis centres selected using a k-means routine and, in this mode, it provides a hybrid supervised centre selection approach.
Resumo:
A statistical–dynamical regionalization approach is developed to assess possible changes in wind storm impacts. The method is applied to North Rhine-Westphalia (Western Germany) using the FOOT3DK mesoscale model for dynamical downscaling and ECHAM5/OM1 global circulation model climate projections. The method first classifies typical weather developments within the reanalysis period using K-means cluster algorithm. Most historical wind storms are associated with four weather developments (primary storm-clusters). Mesoscale simulations are performed for representative elements for all clusters to derive regional wind climatology. Additionally, 28 historical storms affecting Western Germany are simulated. Empirical functions are estimated to relate wind gust fields and insured losses. Transient ECHAM5/OM1 simulations show an enhanced frequency of primary storm-clusters and storms for 2060–2100 compared to 1960–2000. Accordingly, wind gusts increase over Western Germany, reaching locally +5% for 98th wind gust percentiles (A2-scenario). Consequently, storm losses are expected to increase substantially (+8% for A1B-scenario, +19% for A2-scenario). Regional patterns show larger changes over north-eastern parts of North Rhine-Westphalia than for western parts. For storms with return periods above 20 yr, loss expectations for Germany may increase by a factor of 2. These results document the method's functionality to assess future changes in loss potentials in regional terms.
Resumo:
This paper proposes a novel way to combine different observation models in a particle filter framework. This, so called, auto-adjustable observation model, enhance the particle filter accuracy when the tracked objects overlap without infringing a great runtime penalty to the whole tracking system. The approach has been tested under two important real world situations related to animal behavior: mice and larvae tracking. The proposal was compared to some state-of-art approaches and the results show, under the datasets tested, that a good trade-off between accuracy and runtime can be achieved using an auto-adjustable observation model. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Parkinson's disease (PD) is the second most common neurodegenerative disorder (after Alzheimer's disease) and directly affects upto 5 million people worldwide. The stages (Hoehn and Yaar) of disease has been predicted by many methods which will be helpful for the doctors to give the dosage according to it. So these methods were brought up based on the data set which includes about seventy patients at nine clinics in Sweden. The purpose of the work is to analyze unsupervised technique with supervised neural network techniques in order to make sure the collected data sets are reliable to make decisions. The data which is available was preprocessed before calculating the features of it. One of the complex and efficient feature called wavelets has been calculated to present the data set to the network. The dimension of the final feature set has been reduced using principle component analysis. For unsupervised learning k-means gives the closer result around 76% while comparing with supervised techniques. Back propagation and J4 has been used as supervised model to classify the stages of Parkinson's disease where back propagation gives the variance percentage of 76-82%. The results of both these models have been analyzed. This proves that the data which are collected are reliable to predict the disease stages in Parkinson's disease.
Resumo:
O propósito dessa dissertação é avaliar, numa perspectiva geográfica, os setores industriais no Brasil nas últimas três décadas. Numa primeira instância, o objetivo é verificar o nível de especialização e concentração dos estados brasileiros em termos industriais, utilizando-se os índices de Krugman e Gini, respectivamente. Com os resultados desses dois índices, os estados brasileiros são separados em quatro grupos, segundo o método de grupamento de médias K. Através de um produto interno usual entre o vetor da distribuição da produção industrial dos setores nos estados e vetores de algumas características desses setores (chamado de Viés das Características da Indústria - VCI), verifica-se em que tipos de indústrias os estados estão se especializando e/ou concentrando. Uma análise multivariada de componentes principais é feita com os VCI’s, na qual esses componentes principais são usados para verificar a similaridade dos estados. Sob outra perspectiva, busca-se investigar o nível de concentração geográfico dos setores industriais brasileiros. Para tanto, utilizaram-se o índice Gini e o índice de Venables. Nesse último, a distância entre os estados não é negligenciada para mensuração da concentração. Os setores industriais são separados em três grupos pelo método de grupamento de médias K, no qual as variáveis utilizadas são os componentes principais das características das indústrias. Utilizando outro produto interno, o Viés da Característica dos Estados (VCE), observa-se em que tipo de estados os setores industriais estão se concentrando ou não. Para visualizar como essas duas perspectivas, ou seja, como as características dos estados e das indústrias influenciam a localização dos setores industriais no território brasileiro, um modelo econométrico de dados cruzados de Midelfart-Knarvik e outros (2000) é estabelecido para o caso brasileiro. Neste modelo econométrico, é possível investigar como a interação das características das indústrias e dos estados podem determinar onde a indústria se localiza. Os principais resultados mostram que os fortes investimentos em infraestrutura na década de 70 e a abertura comercial na década de 90 foram marcantes para localização da indústria brasileira.
Resumo:
Market risk exposure plays a key role for nancial institutions risk management. A possible measure for this exposure is to evaluate losses likely to incurwhen the price of the portfolio's assets declines using Value-at-Risk (VaR) estimates, one of the most prominent measure of nancial downside market risk. This paper suggests an evolving possibilistic fuzzy modeling approach for VaR estimation. The approach is based on an extension of the possibilistic fuzzy c-means clustering and functional fuzzy rule-based modeling, which employs memberships and typicalities to update clusters and creates new clusters based on a statistical control distance-based criteria. ePFM also uses an utility measure to evaluate the quality of the current cluster structure. Computational experiments consider data of the main global equity market indexes of United States, London, Germany, Spain and Brazil from January 2000 to December 2012 for VaR estimation using ePFM, traditional VaR benchmarks such as Historical Simulation, GARCH, EWMA, and Extreme Value Theory and state of the art evolving approaches. The results show that ePFM is a potential candidate for VaR modeling, with better performance than alternative approaches.
Resumo:
In recent years, the DFA introduced by Peng, was established as an important tool capable of detecting long-range autocorrelation in time series with non-stationary. This technique has been successfully applied to various areas such as: Econophysics, Biophysics, Medicine, Physics and Climatology. In this study, we used the DFA technique to obtain the Hurst exponent (H) of the profile of electric density profile (RHOB) of 53 wells resulting from the Field School of Namorados. In this work we want to know if we can or not use H to spatially characterize the spatial data field. Two cases arise: In the first a set of H reflects the local geology, with wells that are geographically closer showing similar H, and then one can use H in geostatistical procedures. In the second case each well has its proper H and the information of the well are uncorrelated, the profiles show only random fluctuations in H that do not show any spatial structure. Cluster analysis is a method widely used in carrying out statistical analysis. In this work we use the non-hierarchy method of k-means. In order to verify whether a set of data generated by the k-means method shows spatial patterns, we create the parameter Ω (index of neighborhood). High Ω shows more aggregated data, low Ω indicates dispersed or data without spatial correlation. With help of this index and the method of Monte Carlo. Using Ω index we verify that random cluster data shows a distribution of Ω that is lower than actual cluster Ω. Thus we conclude that the data of H obtained in 53 wells are grouped and can be used to characterize space patterns. The analysis of curves level confirmed the results of the k-means
Resumo:
The extent of the Brazilian Atlantic rainforest, a global biodiversity hotspot, has been reduced to less than 7% of its original range. Yet, it contains one of the richest butterfly fauna in the world. Butterflies are commonly used as environmental indicators, mostly because of their strict association with host plants, microclimate and resource availability. This research describes diversity, composition and species richness of frugivorous butterflies in a forest fragment in the Brazilian Northeast. It compares communities in different physiognomies and seasons. The climate in the study area is classified as tropical rainy, with two well defined seasons. Butterfly captures were made with 60 Van Someren-Rydon traps, randomly located within six different habitat units (10 traps per unit) that varied from very open (e.g. coconut plantation) to forest interior. Sampling was made between January and December 2008, for five days each month. I captured 12090 individuals from 32 species. The most abundant species were Taygetis laches, Opsiphanes invirae and Hamadryas februa, which accounted for 70% of all captures. Similarity analysis identified two main groups, one of species associated with open or disturbed areas and a second by species associated with shaded areas. There was a strong seasonal component in species composition, with less species and lower abundance in the dry season and more species and higher abundance in the rainy season. K-means analysis indicates that choice of habitat units overestimated faunal perceptions, suggesting less distinct units. The species Taygetis virgilia, Hamadryas chloe, Callicore pygas e Morpho achilles were associated with less disturbed habitats, while Yphthimoides sp, Historis odius, H. acheronta, Hamadryas feronia e Siderone marthesia likey indicate open or disturbed habitats. This research brings important information for conservation of frugivorous butterflies, and will serve as baseline for future projects in environmental monitoring
Resumo:
The use of the maps obtained from remote sensing orbital images submitted to digital processing became fundamental to optimize conservation and monitoring actions of the coral reefs. However, the accuracy reached in the mapping of submerged areas is limited by variation of the water column that degrades the signal received by the orbital sensor and introduces errors in the final result of the classification. The limited capacity of the traditional methods based on conventional statistical techniques to solve the problems related to the inter-classes took the search of alternative strategies in the area of the Computational Intelligence. In this work an ensemble classifiers was built based on the combination of Support Vector Machines and Minimum Distance Classifier with the objective of classifying remotely sensed images of coral reefs ecosystem. The system is composed by three stages, through which the progressive refinement of the classification process happens. The patterns that received an ambiguous classification in a certain stage of the process were revalued in the subsequent stage. The prediction non ambiguous for all the data happened through the reduction or elimination of the false positive. The images were classified into five bottom-types: deep water; under-water corals; inter-tidal corals; algal and sandy bottom. The highest overall accuracy (89%) was obtained from SVM with polynomial kernel. The accuracy of the classified image was compared through the use of error matrix to the results obtained by the application of other classification methods based on a single classifier (neural network and the k-means algorithm). In the final, the comparison of results achieved demonstrated the potential of the ensemble classifiers as a tool of classification of images from submerged areas subject to the noise caused by atmospheric effects and the water column
Resumo:
ln this work the implementation of the SOM (Self Organizing Maps) algorithm or Kohonen neural network is presented in the form of hierarchical structures, applied to the compression of images. The main objective of this approach is to develop an Hierarchical SOM algorithm with static structure and another one with dynamic structure to generate codebooks (books of codes) in the process of the image Vector Quantization (VQ), reducing the time of processing and obtaining a good rate of compression of images with a minimum degradation of the quality in relation to the original image. Both self-organizing neural networks developed here, were denominated HSOM, for static case, and DHSOM, for the dynamic case. ln the first form, the hierarchical structure is previously defined and in the later this structure grows in an automatic way in agreement with heuristic rules that explore the data of the training group without use of external parameters. For the network, the heuristic mIes determine the dynamics of growth, the pruning of ramifications criteria, the flexibility and the size of children maps. The LBO (Linde-Buzo-Oray) algorithm or K-means, one ofthe more used algorithms to develop codebook for Vector Quantization, was used together with the algorithm of Kohonen in its basic form, that is, not hierarchical, as a reference to compare the performance of the algorithms here proposed. A performance analysis between the two hierarchical structures is also accomplished in this work. The efficiency of the proposed processing is verified by the reduction in the complexity computational compared to the traditional algorithms, as well as, through the quantitative analysis of the images reconstructed in function of the parameters: (PSNR) peak signal-to-noise ratio and (MSE) medium squared error
Resumo:
This work proposes a kinematic control scheme, using visual feedback for a robot arm with five degrees of freedom. Using computational vision techniques, a method was developed to determine the cartesian 3d position and orientation of the robot arm (pose) using a robot image obtained through a camera. A colored triangular label is disposed on the robot manipulator tool and efficient heuristic rules are used to obtain the vertexes of that label in the image. The tool pose is obtained from those vertexes through numerical methods. A color calibration scheme based in the K-means algorithm was implemented to guarantee the robustness of the vision system in the presence of light variations. The extrinsic camera parameters are computed from the image of four coplanar points whose cartesian 3d coordinates, related to a fixed frame, are known. Two distinct poses of the tool, initial and final, obtained from image, are interpolated to generate a desired trajectory in cartesian space. The error signal in the proposed control scheme consists in the difference between the desired tool pose and the actual tool pose. Gains are applied at the error signal and the signal resulting is mapped in joint incrementals using the pseudoinverse of the manipulator jacobian matrix. These incrementals are applied to the manipulator joints moving the tool to the desired pose
Resumo:
The use of non-human primates in scientific research has contributed significantly to the biomedical area and, in the case of Callithrix jacchus, has provided important evidence on physiological mechanisms that help explain its biology, making the species a valuable experimental model in different pathologies. However, raising non-human primates in captivity for long periods of time is accompanied by behavioral disorders and chronic diseases, as well as progressive weight loss in most of the animals. The Primatology Center of the Universidade Federal do Rio Grande do Norte (UFRN) has housed a colony of C. jacchus for nearly 30 years and during this period these animals have been weighed systematically to detect possible alterations in their clinical conditions. This procedure has generated a volume of data on the weight of animals at different age ranges. These data are of great importance in the study of this variable from different perspectives. Accordingly, this paper presents three studies using weight data collected over 15 years (1985-2000) as a way of verifying the health status and development of the animals. The first study produced the first article, which describes the histopathological findings of animals with probable diagnosis of permanent wasting marmoset syndrome (WMS). All the animals were carriers of trematode parasites (Platynosomum spp) and had obstruction in the hepatobiliary system; it is suggested that this agent is one of the etiological factors of the syndrome. In the second article, the analysis focused on comparing environmental profile and cortisol levels between the animals with normal weight curve evolution and those with WMS. We observed a marked decrease in locomotion, increased use of lower cage extracts and hypocortisolemia. The latter is likely associated to an adaptation of the mechanisms that make up the hypothalamus-hypophysis-adrenal axis, as observed in other mammals under conditions of chronic malnutrition. Finally, in the third study, the animals with weight alterations were excluded from the sample and, using computational tools (K-means and SOM) in a non-supervised way, we suggest found new ontogenetic development classes for C. jacchus. These were redimensioned from five to eight classes: infant I, infant II, infant III, juvenile I, juvenile II, sub-adult, young adult and elderly adult, in order to provide a more suitable classification for more detailed studies that require better control over the animal development
Resumo:
Objective to establish a methodology for the oil spill monitoring on the sea surface, located at the Submerged Exploration Area of the Polo Region of Guamaré, in the State of Rio Grande do Norte, using orbital images of Synthetic Aperture Radar (SAR integrated with meteoceanographycs products. This methodology was applied in the following stages: (1) the creation of a base map of the Exploration Area; (2) the processing of NOAA/AVHRR and ERS-2 images for generation of meteoceanographycs products; (3) the processing of RADARSAT-1 images for monitoring of oil spills; (4) the integration of RADARSAT-1 images with NOAA/AVHRR and ERS-2 image products; and (5) the structuring of a data base. The Integration of RADARSAT-1 image of the Potiguar Basin of day 21.05.99 with the base map of the Exploration Area of the Polo Region of Guamaré for the identification of the probable sources of the oil spots, was used successfully in the detention of the probable spot of oil detected next to the exit to the submarine emissary in the Exploration Area of the Polo Region of Guamaré. To support the integration of RADARSAT-1 images with NOAA/AVHRR and ERS-2 image products, a methodology was developed for the classification of oil spills identified by RADARSAT-1 images. For this, the following algorithms of classification not supervised were tested: K-means, Fuzzy k-means and Isodata. These algorithms are part of the PCI Geomatics software, which was used for the filtering of RADARSAT-1 images. For validation of the results, the oil spills submitted to the unsupervised classification were compared to the results of the Semivariogram Textural Classifier (STC). The mentioned classifier was developed especially for oil spill classification purposes and requires PCI software for the whole processing of RADARSAT-1 images. After all, the results of the classifications were analyzed through Visual Analysis; Calculation of Proportionality of Largeness and Analysis Statistics. Amongst the three algorithms of classifications tested, it was noted that there were no significant alterations in relation to the spills classified with the STC, in all of the analyses taken into consideration. Therefore, considering all the procedures, it has been shown that the described methodology can be successfully applied using the unsupervised classifiers tested, resulting in a decrease of time in the identification and classification processing of oil spills, if compared with the utilization of the STC classifier