942 resultados para alkali activated slag concretes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exoloops of glycoprotein hormone receptors (GpHRs) transduce the signal generated by the ligand-ectodomain interactions to the transmembrane helices either through direct hormonal contact and/or by modulating the interdomain interactions between the hinge region (HinR) and the transmembrane domain (TMD). The ligand-induced conformational alterations in the HinRs and the interhelical loops of luteinizing hormone receptor/follicle stimulating hormone receptor/thyroid stimulating hormone receptor were mapped using exoloop-specific antibodies generated against a mini-TMD protein designed to mimic the native exoloop conformations that were created by joining the thyroid stimulating hormone receptor exoloops constrained through helical tethers and library-derived linkers. The antibody against the mini-TMD specifically recognized all three GpHRs and inhibited the basal and hormone-stimulated cAMP production without affecting hormone binding. Interestingly, binding of the antibody to all three receptors was abolished by prior incubation of the receptors with the respective hormones, suggesting that the exoloops are buried in the hormone-receptor complexes. The antibody also suppressed the high basal activities of gain-of-function mutations in the HinRs, exoloops, and TMDs such as those involved in precocious puberty and thyroid toxic adenomas. Using the antibody and point/deletion/chimeric receptor mutants, we demonstrate that changes in the HinR-exoloop interactions play an important role in receptor activation. Computational analysis suggests that the mini-TMD antibodies act by conformationally locking the transmembrane helices by means of restraining the exoloops and the juxta-membrane regions. Using GpHRs as a model, we describe a novel computational approach of generating soluble TMD mimics that can be used to explain the role of exoloops during receptor activation and their interplay with TMDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel ultrasound-sensitive nanocapsules were designed via layer-by-layer assembly (LbL) of polyelectrolytes for remote activated release of biomolecules/drug. Nanocapsules embedded with silver nanoparticles in the walls were synthesized by alternate assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by nanoparticle synthesis and subsequent template removal thus yielding nanocapsules. The silver NPs were synthesized in situ within the capsule walls under controlled conditions. The nanocapsules were found to be well dispersed and the silver NPs were evenly distributed within the shell. FITC-dextran permeated easily into the capsules containing silver NP's due to the pores generated during the formation of NP's. When the loaded nanocapsules were sonicated, the presence of the silver NPs in the shell structure led to rupturing of the shell into smaller fragments thus releasing the FITC-dextran. Such nanocapsules have the potential to be used as drug delivery vehicles and offer the scope for further development in the areas of modern medicine, material science, and biochemistry. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat of adsorption of methane, ethane, carbon dioxide, R-507a and R-134a on several specimens of microporous activated carbons is derived from experimental adsorption data fitted to the Dubinin-Astakhov equation. These adsorption results are compared with literature data obtained from calorimetric measurements and from the pressure-temperature relation during isosteric heating/cooling. Because the adsorbed phase volume plays an important role, its dependence on temperature and pressure needs to be correctly assessed. In addition, for super-critical gas adsorption, the evaluation of the pseudo-saturation pressure also needs a judicious treatment. Based on the evaluation of carbon dioxide adsorption, it can be seen that sub-critical and super-critical adsorption show different temperature dependences of the isosteric heat of adsorption. The temperature and loading dependence of this property needs to be taken into account while designing practical systems. Some practical implications of these findings are enumerated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 12 V Substrate-Integrated PbO2-Activated Carbon hybrid ultracapacitor (SI-PbO2-AC HUCs) with silica-gel sulfuric acid electrolyte is developed and performance tested. The performance of the silica-gel based hybrid ultracapacitor is compared with flooded and AGM-based HUCs. These HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area activated carbon with dense graphite-sheet substrate as negative electrodes. 12 V SI-PbO2-AC HUCs with flooded, AGM and gel electrolytes are found to have capacitance values of 308 F, 184 F, and 269 F at C-rate and can be pulse charged and discharged for 100,000 cycles with only a nominal decrease in their capacitance values. The best performance is exhibited by gel-electrolyte HUCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low thermal diffusivity of adsorption beds induces a large thermal gradient across cylindrical adsorbers used in adsorption cooling cycles. This reduces the concentration difference across which a thermal compressor operates. Slow adsorption kinetics in conjunction with the void volume effect further diminishes throughputs from those adsorption thermal compressors. The problem can be partially alleviated by increasing the desorption temperatures. The theme of this paper is the determination the minimum desorption temperature required for a given set of evaporating/condensing temperatures for an activated carbon + HFC 134a adsorption cooler. The calculation scheme is validated from experimental data. Results from a parametric analysis covering a range of evaporating/condensing/desorption temperatures are presented. It is found that the overall uptake efficiency and Carnot COP characterize these bounds. A design methodology for adsorber sizing is evolved. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanism of ion transport in glasses continues to be incompletely understood. Several of the theoretical models in vogue fail to rationalize conductivity behaviour when d.c. and a.c. measurements are considered together. While they seem to involve the presence of at least two components in d.c. activation energy, experiments fail to reveal that feature. Further, only minor importance is given to the influence of structure of the glass on the ionic conductivity behaviour. In this paper, we have examined several general aspects of ion transport taking the example of ionically conducting glasses in pseudo binary, yNa(2)B(4)O(7)center dot(1-y) M (a) O (b) (with y = 0 center dot 25-0 center dot 79 and M (a) O (b) = PbO, TeO2 and Bi2O3) system of glasses which have also been recently characterized. Ion transport in them has been studied in detail. We have proposed that non-bridging oxygen (NBO) participation is crucial to the understanding of the observed conductivity behaviour. NBO-BO switching is projected as the first important step in ion transport and alkali ion jump is a subsequent event with a characteristically lower barrier which is, therefore, not observed in any study. All important observations in d.c. and a.c. transport in glasses are found consistent with this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryosorption pump is the only solution for pumping helium and hydrogen in fusion reactors. It is chosen because it offers highest pumping speed as well as the only suitable pump for the harsh environments in a tokamak. Towards the development of such cryosorption pumps, the optimal choice of the right activated carbon panels is essential. In order to characterize the performance of the panels with indigenously developed activated carbon, a cryocooler based cryosorption pump with scaled down sizes of panels is experimented. The results are compared with the commercial cryopanel used in a CTI cryosorption (model: Cryotorr 7) pump. The cryopanel is mounted on the cold head of the second stage GM cryocooler which cools the cryopanel down to 11K with first stage reaching about similar to 50K. With no heat load, cryopump gives the ultimate vacuum of 2.1E-7 mbar. The pumping speed of different gases such as nitrogen, argon, hydrogen, helium are tested both on indigenous and commercial cryopanel. These studies serve as a bench mark towards the development of better cryopanels to be cooled by liquid helium for use with tokamak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopic study on Oxyfluoro Vanadate glasses containing various proportions of lithium fluoride and rubidium fluoride was carried out to see an effect of mixture of alkali on vanadium-oxygen (V-O) bond length. Glasses with a general formula 40V(2)O(5) - 30BaF(2) - (30 - x) LiF - xRbF (x = 0-30) were prepared. Room temperature Raman spectra of these glass samples were recorded in back scattering geometry. The data presented is in ``reduced Raman intensity'' form with maximum peak scaled to 100. We have used v = Aexp(BR), where A and B are fitting parameters, to correlate the bond length R with Raman scattering frequency v. We observed that variation in bond length and its distribution about a most probable value can be correlated to the alkali environment present in these glasses. We also observed that all rubidium environment around the network forming unit is more homogenous than all lithium environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many industrial processes involve reaction between the two immiscible liquid systems. It is very important to increase the efficiency and productivity of such reactions. One of the important processes that involve such reactions is the metal-slag system. To increase the reaction rate or efficiency, one must increase the contact surface area of one of the phases. This is either done by emulsifying the slag into the metal phase or the metal into the slag phase. The latter is preferred from the stability viewpoint. Recently, we have proposed a simple and elegant mathematical model to describe metal emulsification in the presence of bottom gas bubbling. The same model is being extended here. The effect of slag and metal phase viscosity, density and metal droplet size on the metal droplet velocity in the slag phase is discussed for the above mentioned metal emulsification process. The models results have been compared with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental adsorption data of difluoromethane (HFC-32) on activated carbon in powder (ACP) and fiber (ACF) forms over a range of (25 to 75) degrees C and pressures up to 1400 kPa are reported. The data are fitted to Toth and Dubinin-Astakhov isotherm equations. Adsorbed phase volume is derived from the data. Isosteric heats of adsorption are extracted, and their dependence on relative loading and relative pressure is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a nanoparticle loading protocol to develop a transparent, multifunctional polyelectrolyte multilayer film for externally activated drug and protein delivery. The composite film was designed by alternate adsorption of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on a glass substrate followed by nanoparticle synthesis through a polyol reduction method. The films showed a uniform distribution of spherical silver nanoparticles with an average diameter of 50 +/- 20 nm, which increased to 80 +/- 20 nm when the AgNO3 concentration was increased from 25 to 50 mM. The porous and supramolecular structure of the polyelectrolyte multilayer film was used to immobilize ciprofloxacin hydrochloride (CH) and bovine serum albumin (BSA) within the polymeric network of the film. When exposed to external triggers such as ultrasonication and laser light the loaded films were ruptured and released the loaded BSA and CH. The release of CH is faster than that of BSA due to a higher diffusion rate. Circular dichroism measurements confirmed that there was no significant change in the conformation of released BSA in comparison with native BSA. The fabricated films showed significant antibacterial activity against the bacterial pathogen Staphylococcus aureus. Applications envisioned for such drug-loaded films include drug and vaccine delivery through the transdermal route, antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric field activated nonlinear transport is investigated in polypyrrole thin film in both in-plane and out-of-plane geometries down to 5 K and strong anisotropy is observed. A morphological model is suggested to explain the anisotropy through inter-chain and intra-chain transport. The deviation from the variable range hopping at low temperature is accounted by fluctuation assisted transport. From Zabrodaskii plots, it is found that electric field can tune the transport from insulating to metallic regime. Glazman-Matveev model is used to describe the nonlinear conduction. Field scaling analysis shows that conductance data at different temperature falls on to a single curve. Nonlinearity exponent, m(T) and characteristic length, L-E are estimated to characterize the transport in both the geometries. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NIS/NaN3 mediated ring opening of various donor-acceptor cyclopropanes has been investigated. The study shows the necessity of the donor oxygen lone pair in such ring opening reactions. This methodology has been utilized in the synthesis of C-1 linked pseudodisaccharides through the use of click chemistry. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed alkali metal effect is a long-standing problem in glasses. Electron paramagnetic resonance (EPR) is used by several researchers to study the mixed alkali metal effect, but a detailed analysis of the nearest neighbor environment of the glass former using spin-Hamiltonian parameters was elusive. In this study we have prepared a series of vanadate glasses having general formula (mol %) 40 V2O5-30BaF(2)-(30 - x)LiF-xRbF with x = 5, 10, 15, 20, 25, and 30. Spin-Hamiltonian parameters of V4+ ions were extracted by simulating and fitting to the experimental spectra using EasySpin. From the analysis of these parameters it is observed that the replacement of lithium ions by rubidium ions follows a ``preferential substitution model''. Using this proposed model, we were able to account for the observed variation in the ratio of the g parameter, which goes through a maximum. This reflects an asymmetric to symmetric changeover of. the alkali metal ion environment around the vanadium site. Further, this model also accounts for the variation in oxidation state of vanadium ion, which was confirmed from the variation in signal intensity of EPR spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transient 2D axi-symmetric and lumped parameter (LP) model with constant outflow conditions have been developed to study the discharge capacity of an activated carbon bed. The predicted discharge times and variations in bed pressure and temperature are in good agreement with experimental results obtained from a 1.82 l adsorbed natural gas (ANG) storage system. Under ambient air conditions, a maximum temperature drop of 29.5 K and 45.5 K are predicted at the bed center for discharge rates of 1.0 l min(-1) and 5.0 l min(-1) respectively. The corresponding discharge efficiencies are 77% and 71.5% respectively with discharge efficiencies improving with decreasing outflow rates. Increasing the LID ratio from 1.9 to 7.8 had only a marginal increase in the discharge efficiency. Forced convection (exhaust gas) heating had a significant effect on the discharge efficiency, leading to efficiencies as high as 92.8% at a discharge of 1.0 l min(-1) and 88.7% at 5 l min(-1). Our study shows that the LP model can be reliably used to obtain discharge times due to the uniform pressure distributions in the bed. Temperature predictions with the LP model were more accurate at ambient conditions and higher discharge rates, due to greater uniformity in bed temperatures. For the low thermal conductivity carbon porous beds, our study shows that exhaust gas heating can be used as an effective and convenient strategy to improve the discharge characteristics and performance of an ANG system. (C) 2013 Elsevier Ltd. All rights reserved.