439 resultados para Wechselwirkung
Resumo:
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von Polymeren mit redox-funktionalen Phenothiazin-Seitenketten. Phenothiazin und seine Derivate sind kleine Redoxeinheiten, deren reversibles Redoxverhalten mit electrochromen Eigenschaften verbunden ist. Das besondere an Phenothiazine ist die Bildung von stabilen Radikalkationen im oxidierten Zustand. Daher können Phenothiazine als bistabile Moleküle agieren und zwischen zwei stabilen Redoxzuständen wechseln. Dieser Schaltprozess geht gleichzeitig mit einer Farbveränderung an her.rnrnIm Rahmen dieser Arbeit wird die Synthese neuartiger Phenothiazin-Polymere mittels radikalischer Polymerisation beschrieben. Phenothiazin-Derivate wurden kovalent an aliphatischen und aromatischen Polymerketten gebunden. Dies erfolgte über zwei unterschiedlichen synthetischen Routen. Die erste Route beinhaltet den Einsatz von Vinyl-Monomeren mit Phenothiazin Funktionalität zur direkten Polymerisation. Die zweite Route verwendet Amin modifizierte Phenothiazin-Derivate zur Funktionalisierung von Polymeren mit Aktivester-Seitenketten in einer polymeranalogen Reaktion. rnrnPolymere mit redox-funktionalen Phenothiazin-Seitenketten sind aufgrund ihrer Elektron-Donor-Eigenschaften geeignete Kandidaten für die Verwendung als Kathodenmaterialien. Zur Überprüfung ihrer Eignung wurden Phenothiazin-Polymere als Elektrodenmaterialien in Lithium-Batteriezellen eingesetzt. Die verwendeten Polymere wiesen gute Kapazitätswerte von circa 50-90 Ah/kg sowie schnelle Aufladezeiten in der Batteriezelle auf. Besonders die Aufladezeiten sind 5-10 mal höher als konventionelle Lithium-Batterien. Im Hinblick auf Anzahl der Lade- und Entladezyklen, erzielten die Polymere gute Werte in den Langzeit-Stabilitätstests. Insgesamt überstehen die Polymere 500 Ladezyklen mit geringen Veränderungen der Anfangswerte bezüglich Ladezeiten und -kapazitäten. Die Langzeit-Stabilität hängt unmittelbar mit der Radikalstabilität zusammen. Eine Stabilisierung der Radikalkationen gelang durch die Verlängerung der Seitenkette am Stickstoffatom des Phenothiazins und der Polymerhauptkette. Eine derartige Alkyl-Substitution erhöht die Radikalstabilität durch verstärkte Wechselwirkung mit dem aromatischen Ring und verbessert somit die Batterieleistung hinsichtlich der Stabilität gegenüber Lade- und Entladezyklen. rnrnDes Weiteren wurde die praktische Anwendung von bistabilen Phenothiazin-Polymeren als Speichermedium für hohe Datendichten untersucht. Dazu wurden dünne Filme des Polymers auf leitfähigen Substraten elektrochemisch oxidiert. Die elektrochemische Oxidation erfolgte mittels Rasterkraftmikroskopie in Kombination mit leitfähigen Mikroskopspitzen. Mittels dieser Technik gelang es, die Oberfläche des Polymers im nanoskaligen Bereich zu oxidieren und somit die lokale Leitfähigkeit zu verändern. Damit konnten unterschiedlich große Muster lithographisch beschrieben und aufgrund der Veränderung ihrer Leitfähigkeit detektiert werden. Der Schreibprozess führte nur zu einer Veränderung der lokalen Leitfähigkeit ohne die topographische Beschaffenheit des Polymerfilms zu beeinflussen. Außerdem erwiesen sich die Muster als besonders stabil sowohl mechanisch als auch über die Zeit.rnrnZum Schluss wurden neue Synthesestrategien entwickelt um mechanisch stabile als auch redox-funktionale Oberflächen zu produzieren. Mit Hilfe der oberflächen-initiierten Atomtransfer-Radikalpolymerisation wurden gepfropfte Polymerbürsten mit redox-funktionalen Phenothiazin-Seitenketten hergestellt und mittels Röntgenmethoden und Rasterkraftmikroskopie analysiert. Eine der Synthesestrategien geht von gepfropften Aktivesterbürsten aus, die anschließend in einem nachfolgenden Schritt mit redox-funktionalen Gruppen modifiziert werden können. Diese Vorgehensweise ist besonders vielversprechend und erlaubt es unterschiedliche funktionelle Gruppen an den Aktivesterbürsten zu verankern. Damit können durch Verwendung von vernetzenden Gruppen neben den Redoxeigenschaften, die mechanische Stabilität solcher Polymerfilme optimiert werden. rn rn
Resumo:
This thesis describes the investigation of systematically varied organic molecules for use in molecular self-assembly processes. All experiments were performed using high-resolution non-contact atomic force microscopy under UHV conditions and at room temperature. Using this technique, three different approaches for influencing intermolecular and molecule-surface interaction on the insulating calcite(10.4) surface were investigated by imaging the structure formation at the molecular scale. I first demonstrated the functionalization of shape-persistent oligo(p-benzamide)s that was engineered by introducing different functional groups and investigating their effect on the structural formation on the sample surface. The molecular core was designed to provide significant electrostatic anchoring towards the surface, while at the same time maintaining the flexibility to fine-tune the resulting structure by adjusting the intermolecular cohesion energy. The success of this strategy is based on a clear separation of the molecule-substrate interaction from the molecule-molecule interaction. My results show that sufficient molecule-surface anchoring can be achieved without restricting the structural flexibility that is needed for the design of complex molecular systems. Three derivatives of terephthalic acid (TPA) were investigated in chapter 7. Here, the focus was on changing the adhesion to the calcite surface by introducing different anchor functionalities to the TPA backbone. For all observed molecules, the strong substrate templating effect results in molecular structures that are strictly oriented along the calcite main crystal directions. This templating is especially pronounced in the case of 2-ATPA where chain formation on the calcite surface is observed in contrast to the formation of molecular layers in the bulk. At the same time, the amino group of 2-ATPA proved an efficient anchor functionality, successfully stabilizing the molecular chains on the sample surface. These findings emphasizes, once again, the importance of balancing and fine-tuning molecule-molecule and molecule-surface interactions in order to achieve stable, yet structurally flexible molecular arrangements on the sample surface. In the last chapter, I showed how the intrinsic property of molecular chirality decisively influences the structure formation in molecular self-assembly. This effect is especially pronounced in the case of the chiral heptahelicene-2-carboxylic acid. Deposition of the enantiopure molecules results in the formation of homochiral islands on the sample surface which is in sharp contrast to the formation of uni-directional double rows upon deposition of the racemate onto the same surface. While it remained uncertain from these previous experiments whether the double rows are composed of hetero- or homochiral molecules, I could clearly answer that question here and demonstrate that the rows are of heterochiral origin. Chirality, thus, proves to be another important parameter to steer the intermolecular interaction on surfaces. Altogether, the results of this thesis demonstrate that, in order to successfully control the structure formation in molecular self-assembly, the correct combination of molecule and surface properties is crucial. This is of special importance when working on substrates that exhibit a strong influence on the structure formation, such as the calcite(10.4) surface. Through the systematic variation of functional groups several important parameters that influence the balance between molecule-surface and molecule-molecule interaction were identified here, and the results of this thesis can, thus, act as a guideline for the rational design of molecules for use in molecular self-assembly.
Resumo:
In der vorliegenden Arbeit wurde der Nachweis des Isotops Np-237 mit Resonanzionisations-Massenspektrometrie (RIMS) entwickelt und optimiert. Bei RIMS werden Probenatome mehrstufig-resonant mit Laserstrahlung angeregt, ionisiert und anschließend massenspektrometrisch nachgewiesen. Die Bestimmung geeigneter Energiezustände für die Anregung und Ionisation von Np-237 erfolgte durch Resonanzionisationsspektroskopie (RIS), wobei über 300 bisher unbekannte Energieniveaus und autoionisierende Zustände von Np-237 identifiziert wurden. Mit in-source-RIMS wird für das Isotop eine Nachweisgrenze von 9E+5 Atome erreicht. rnrnDie Mobilität von Np in der Umwelt hängt stark von seiner Elementspeziation ab. Für Sicherheitsanalysen potentieller Endlagerstandorte werden daher Methoden benötigt, die Aussagen über die unter verschiedenen Bedingungen vorliegenden Neptuniumspezies ermöglichen. Hierzu wurde eine online-Kopplung aus Kapillarelektrophorese (CE) und ICP-MS (inductively coupled plasma mass spectrometry) genutzt, mit der die Np-Redoxspezies Np(IV) und Np(V) noch bei einer Konzentrationen von 1E-9 mol/L selektiv nachgewiesen werden können. Das Verfahren wurde eingesetzt, um die Wechselwirkung des Elements mit Opalinuston unter verschiedenen Bedingungen zu untersuchen. Dabei konnte gezeigt werden, dass bei Gegenwart von Fe(II) Np(V) zu Np(IV) reduziert wird und dieses am Tongestein sorbiert. Dies führt insgesamt zu einer deutlich erhöhten Sorption des Np am Ton.
Potential vorticity and moisture in extratropical cyclones : climatology and sensitivity experiments
Resumo:
The development of extratropical cyclones can be seen as an interplay of three positive potential vorticity (PV) anomalies: an upper-level stratospheric intrusion, low-tropospheric diabatically produced PV, and a warm anomaly at the surface acting as a surrogate PV anomaly. In the mature stage they become vertically aligned and form a “PV tower” associated with strong cyclonic circulation. This paradigm of extratropical cyclone development provides the basis of this thesis, which will use a climatological dataset and numerical model experiments to investigate the amplitude of the three anomalies and the processes leading in particular to the formation of the diabatically produced low-tropospheric PV anomaly.rnrnThe first part of this study, based on the interim ECMWF Re-Analysis (ERA-Interim) dataset, quantifies the amplitude of the three PV anomalies in mature extratropical cyclones in different regions in the Northern Hemisphere on a climatological basis. A tracking algorithm is applied to sea level pressure (SLP) fields to identify cyclone tracks. Surface potential temperature anomalies ∆θ and vertical profiles of PV anomalies ∆PV are calculated at the time of the cyclones’ minimum SLP and during the intensification phase 24 hours before in a vertical cylinder with a radius of 200 km around the surface cyclone center. To compare the characteristics of the cyclones, they are grouped according to their location (8 regions) and intensity, where the central SLP is used as a measure of intensity. Composites of ∆PV profiles and ∆θ are calculated for each region and intensity class at the time of minimum SLP and during the cyclone intensification phase.rnrnDuring the cyclones’ development stage the amplitudes of all three anomalies increase on average. In the mature stage all three anomalies are typically larger for intense than for weak winter cyclones [e.g., 0.6 versus 0.2 potential vorticity units (PVU) at lower levels, and 1.5 versus 0.5 PVU at upper levels].rnThe regional variability of the cyclones’ vertical structure and the profile evolution is prominent (cyclones in some regions are more sensitive to the amplitude of a particular anomaly than in other regions). Values of ∆θ and low-level ∆PV are on average larger in the western parts of the oceans than in the eastern parts. In addition, a large seasonal variability can be identified, with fewer and weaker cyclones especially in the summer, associated with higher low-tropospheric PV values, but also with a higher tropopause and much weaker surface potential temperature anomalies (compared to winter cyclones).rnrnIn the second part, we were interested in the diabatic low-level part of PV towers. Evaporative sources were identified of moisture that was involved in PV production through condensation. Lagrangian backward trajectories were calculated from the region with high PV values at low-levels in the cyclones. PV production regions were identified along these trajectories and from these regions a new set of backward trajectories was calculated and moisture uptakes were traced along them. The main contribution from surface evaporation to the specific humidity of the trajectories is collected 12-72 hours prior to therntime of PV production. The uptake region for weaker cyclones with less PV in the centre is typically more localized with reduced uptake values compared to intense cyclones. However, in a qualitative sense uptakes and other variables along single trajectories do not vary much between cyclones of different intensity in different regions.rnrnA sensitivity study with the COSMO model comprises the last part of this work. The study aims at investigating the influence of synthetic moisture modification in the cyclone environment in different stages of its development. Moisture was eliminated in three regions, which were identified as important moisture source regions for PV production. Moisture suppression affected the cyclone the most in its early phase. It led to cyclolysis shortly after its genesis. Nevertheles, a new cyclone formed on the other side of a dry box and developed relatively quickly. Also in other experiments, moisture elimination led to strong intensity reduction of the surface cyclone, limited upper-level development, and delayed or missing interaction between the two.rnrnIn summary, this thesis provides novel insight into the structure of different intensity categories of extratropical cyclones from a PV perspective, which corroborates the findings from a series of previous case studies. It reveals that all three PV anomalies are typically enhanced for more intense cyclones, with important regional differences concerning the relative amplitude of the three anomalies. The moisture source analysis is the first of this kind to study the evaporation-condensation cycle related to the intensification of extratropical cyclones. Interestingly, most of the evaporation occurs during the 3 days prior to the time of maximum cyclone intensity and typically extends over fairly large areas along the track of the cyclone. The numerical model case study complements this analysis by analyzing the impact of regionally confined moisture sources for the evolution of the cyclone.
Resumo:
The thesis investigates the nucleon structure probed by the electromagnetic interaction. One of the most basic observables, reflecting the electromagnetic structure of the nucleon, are the form factors, which have been studied by means of elastic electron-proton scattering with ever increasing precision for several decades. In the timelike region, corresponding with the proton-antiproton annihilation into a electron-positron pair, the present experimental information is much less accurate. However, in the near future high-precision form factor measurements are planned. About 50 years after the first pioneering measurements of the electromagnetic form factors, polarization experiments stirred up the field since the results were found to be in striking contradiction to the findings of previous form factor investigations from unpolarized measurements. Triggered by the conflicting results, a whole new field studying the influence of two-photon exchange corrections to elastic electron-proton scattering emerged, which appeared as the most likely explanation of the discrepancy. The main part of this thesis deals with theoretical studies of two-photon exchange, which is investigated particularly with regard to form factor measurements in the spacelike as well as in the timelike region. An extraction of the two-photon amplitudes in the spacelike region through a combined analysis using the results of unpolarized cross section measurements and polarization experiments is presented. Furthermore, predictions of the two-photon exchange effects on the e+p/e-p cross section ratio are given for several new experiments, which are currently ongoing. The two-photon exchange corrections are also investigated in the timelike region in the process pbar{p} -> e+ e- by means of two factorization approaches. These corrections are found to be smaller than those obtained for the spacelike scattering process. The influence of the two-photon exchange corrections on cross section measurements as well as asymmetries, which allow a direct access of the two-photon exchange contribution, is discussed. Furthermore, one of the factorization approaches is applied for investigating the two-boson exchange effects in parity-violating electron-proton scattering. In the last part of the underlying work, the process pbar{p} -> pi0 e+e- is analyzed with the aim of determining the form factors in the so-called unphysical, timelike region below the two-nucleon production threshold. For this purpose, a phenomenological model is used, which provides a good description of the available data of the real photoproduction process pbar{p} -> pi0 gamma.
Resumo:
Diese Arbeit ist ein Beitrag zu den schnell wachsenden Forschungsgebieten der Nano-Biotechnologie und Nanomedizin. Sie behandelt die spezifische Gestaltung magnetischer Nanomaterialien für verschiedene biomedizinische Anwendungsgebiete, wie beispielsweise Kontrastmittel für die magnetische Resonanztomographie (MRT) oder "theragnostische" Agenzien für simultane optische/MR Detektion und Behandlung mittels photodynamischer Therapie (PDT).rnEine Vielzahl magnetischer Nanopartikel (NP) mit unterschiedlichsten magnetischen Eigenschaften wurden im Rahmen dieser Arbeit synthetisiert und erschöpfend charakterisiert. Darüber hinaus wurde eine ganze Reihe von Oberflächenmodifizierungsstrategien entwickelt, um sowohl die kolloidale als auch die chemische Stabilität der Partikel zu verbessern, und dadurch den hohen Anforderungen der in vitro und in vivo Applikation gerecht zu werden. Diese Strategien beinhalteten nicht nur die Verwendung bi-funktionaler und multifunktioneller Polymerliganden, sondern auch die Kondensation geeigneter Silanverbindungen, um eine robuste, chemisch inerte und hydrophile Siliziumdioxid- (SiO2) Schale um die magnetischen NP auszubilden.rnGenauer gesagt, der Bildungsmechanismus und die magnetischen Eigenschaften monodisperser MnO NPs wurden ausgiebig untersucht. Aufgrund ihres einzigartigen magnetischen Verhaltens eignen sich diese NPs besonders als (positive) Kontrastmittel zur Verkürzung der longitudinalen Relaxationszeit T1, was zu einer Aufhellung im entsprechenden MRT-Bild führt. Tatsächlich wurde dieses kontrastverbessernde Potential in mehreren Studien mit unterschiedlichen Oberflächenliganden bestätigt. Au@MnO „Nanoblumen“, auf der anderen Seite, sind Vertreter einer weiteren Klasse von Nanomaterialien, die in den vergangenen Jahren erhebliches Interesse in der wissenschaftlichen Welt geweckt hat und oft „Nano-hetero-Materialien“ genannt wird. Solche Nano-hetero-partikel vereinen die individuellen physikalischen und chemischen Eigenschaften der jeweiligen Komponenten in einem nanopartikulärem System und erhöhen dadurch die Vielseitigkeit der möglichen Anwendungen. Sowohl die magnetischen Merkmale von MnO, als auch die optischen Eigenschaften von Au bieten die Möglichkeit, diese „Nanoblumen“ für die kombinierte MRT und optische Bildgebung zu verwenden. Darüber hinaus erlaubt das Vorliegen zweier chemisch unterschiedlicher Oberflächen die gleichzeitige selektive Anbindung von Katecholliganden (auf MnO) und Thiolliganden (auf Au). Außerdem wurde das therapeutische Potential von magnetischen NPs anhand von MnO NPs demonstriert, die mit dem Photosensibilisator Protoporhyrin IX (PP) funktionalisiert waren. Bei Bestrahlung mit sichtbarem Licht initiiert PP die Produktion von zytotoxisch-reaktivem Sauerstoff. Wir zeigen, dass Nierenkrebszellen, die mit PP-funktionalisierten MnO NPs inkubiert wurden nach Bestrahlung mit Laserlicht verenden, während sie ohne Bestrahlung unverändert bleiben. In einem ähnlichen Experiment untersuchten wir die Eigenschaften von SiO2 beschichteten MnO NPs. Dafür wurde eigens eine neuartige SiO2-Beschichtungsmethode entwickelt, die einer nachfolgende weitere Anbindung verschiedenster Liganden und die Einlagerung von Fluoreszenzfarbstoffen durch herkömmliche Silan- Sol-Gel Chemie erlaubt. Die Partikel zeigten eine ausgezeichnete Stabilität in einer ganzen Reihe wässriger Lösungen, darunter auch physiologische Kochsalzlösung, Pufferlösungen und humanes Blutserum, und waren weniger anfällig gegenüber Mn-Ionenauswaschung als einfache PEGylierte MnO NPs. Des Weiteren konnte bewiesen werden, dass die dünne SiO2 Schicht nur einen geringen Einfluss auf das magnetische Verhalten der NPs hatte, so dass sie weiterhin als T1-Kontrastmittel verwendet werden können. Schließlich konnten zusätzlich FePt@MnO NPs hergestellt werden, welche die individuellen magnetischen Merkmale eines ferromagnetischen (FePt) und eines antiferromagnetischen (MnO) Materials vereinen. Wir zeigen, dass wir die jeweiligen Partikelgrößen, und damit das resultierende magnetische Verhalten, durch Veränderung der experimentellen Parameter variieren können. Die magnetische Wechselwirkung zwischen beiden Materialien kann dabei auf Spinkommunikation an der Grenzfläche zwischen beiden NP-Sorten zurückgeführt werden.rn
Resumo:
Die Reaktion von Kupfertris(trimathylsilyl)silan (= Hypersilylkupfer, CuHyp) mit Iodoorganylverbindungen sollte analog zum Ullmann-Protokoll zum Halogen-Nukleophil-Austausch führen. Tatsächlich beobachteten wir zumeist die Bildung von Cuprio-Organylen, isolierbar in Form von mehrkernigen Neutralkomplexen aus dem Produkt und weiteren Äquivalenten von Hypersilylkupfer. Nach Zugabe von (weichen) Basen wie Trimethylphosphan kam es zur Auflösung dieser Komplexe und zur Bildung der erwarteten Silylorganyle. Von der systematischen Variation der eingesetzten Arene, Alkene und Alkine sowie ihrer Liganden versprachen wir uns tiefere Einsicht in die mechanistischen Zusammenhänge. Neben dem üblichen Halogen-Kupfer-Autausch konnten wir bei orthosubstituierten, bzw. zusätzlich tetramethylsubstituierten Diiodarenen einen einfachen Iod-Siyl-Autausch beobachten (vermutlich über Arinzwischenstufen), für Alkinedukte sogar eine doppelte Silylierung. Tatsächlich zeigen quantenchemische Berechnungen für CuHyp-Iodoorganyl-Systeme eine klare Präferenz von ullmannartigen Verläufen; andererseits führte Basenzugabe erst nachträglich zur Bildung von Ullmann-Produkten über die Auflösung der primären Komplexe. Innerhalb der üblicherweise gebildeten mehrkernigen Komplexe kommen Bindungen durch die Wechselwirkung unbesetzter σ*-Molekülorbitalee am Kupferzentrum von CuHyp und elektronenreichen bindenden Orbitalen in den Kupferorganyleinheiten zustande. Freie Elektronenpaare am Phosphor bei PMe3 könnten analog die Auflösung der Neutralkomplexe und die Bildung von vierkernigen Kupfer(III)-Intermediaten zwischen den Kupferorganyleinheiten und Iodsilan in der Lösung bewirken, die aufgrund ihrer strukturellen und energetischen Besonderheiten zu den erwarteten Ullmann-Produkten weiterreagieren würden. Die beobachteten Primärreaktionen verliefen dann offensichtlich über vergleichbare, aber unterschiedlich strukturierte Intermediate, vermutlich aufgrund der Tatsache, dass das eingesetzte CuHyp als Trimer vorliegt. Diese Annahme wird durch die direkte Silylierung von Iodalkinen gestützt, deren Dreifachbindungen möglicherweise als interne Base die trimeren in monomere CuHyp-Einheiten überführen. In eine ähnliche Richtung wäre die jüngst berichtete direkte Silylierung von Allylen bei Anwesenheit von elektronenreichen CN-Gruppen zu deuten.
Resumo:
Die vorliegende Arbeit wurde im Rahmen des BMWi-Verbundprojektes Wechselwirkung und Transport von Aktiniden im natürlichen Tongestein unter Berücksichtigung von Huminstoffen und Tonorganika – Wechselwirkung von Neptunium und Plutonium mit natürlichem Tongestein“ durchgeführt. Um die langfristige Sicherheit der nuklearen Endlager beurteilen zu können, muss eine mögliche Migration der radiotoxischen Abfälle in die Umwelt betrachtet werden. Wegen seiner langen Halbwertszeit (24000 a) leistet Pu-239 einen wesentlichen Beitrag zur Radiotoxizität abgebrannter Kernbrennstoffe in einem Endlager. Das redox-sensitive Pu tritt in Lösung unter umweltrelevanten Bedingungen in den Oxidationsstufen +III bis +VI auf und kann nebeneinander in bis zu vier Oxidationsstufen vorliegen. Tonsteinformationen werden als mögliches Wirtsgestein für Endlager hoch-radioaktiver Abfälle betrachtet. Deshalb sind ausführliche Informationen zur Mobilisierung und Immobilisierung des Pu durch/in das Grundwasser aus einem Endlager von besonderer Bedeutung. In dieser Arbeit wurden neue Erkenntnisse über die Wechselwirkung zwischen Pu und dem natürlichen Tongestein Opalinuston (OPA, Mont Terri, Schweiz) mit Hinblick auf die Endlagerung wärmeentwickelnder radioaktiver Abfälle in einem geologischen Tiefenlager gewonnen.rnDer Fokus der Arbeit lag dabei auf der Bestimmung der Speziation von Pu an der Mineraloberfläche nach Sorptions- und Diffusionsprozessen mittels verschiedener synchrotronbasierter Methoden (µ-XRF, µ-XANES/EXAFS, µ-XRD, XANES/EXAFS). rnDie Wechselwirkung zwischen Pu und OPA wurde zunächst in Batch- und Diffusionsexperimenten in Abhängigkeit verschiedener experimenteller Parameter (u.a. pH, Pu-Oxidationsstufe) untersucht. In Sorptionsexperimenten konnte gezeigt werden, dass einige Parameter (z.B. Temperatur, Huminsäure) einen deutlichen Einfluss auf die Sorption von Pu haben.rnDie Speziationsuntersuchungen wurden zum einen an Pulverproben aus Batchexperimenten und zum anderen an OPA-Dünnschliffen bzw. Diffusionsproben in Abhängigkeit verschiedener experimenteller Parameter durchgeführt. Die EXAFS-Messungen an der Pu LIII-Kante der Pulverproben ergaben, dass eine innersphäriche Sorption von Pu(IV) an Tongestein unabhängig von dem Ausgangsoxidationszustand des Plutoniums in Lösung stattgefunden hat. Durch die Kombination der ortsaufgelösten Methoden wurde erstmalig mittels μ-XRF die Verteilung von Pu und anderen in OPA enthaltenen Elementen bestimmt. µ-XANES-Spektren an Pu-Anreicherungen auf OPA-Dünnschliffen und in Diffusionsproben bestätigen, dass das weniger mobile Pu(IV) die dominierende Spezies nach den Sorptions- und Diffusionsprozessen ist. Darüber hinaus wurde zum ersten Mal ein Diffusionsprofil von Pu in OPA mittels µ-XRF gemessen. Die Speziationsuntersuchungen mittels μ-XANES zeigten, dass das eingesetzte Pu(V) entlang seines Diffusionspfades zunehmend zu Pu(IV) reduziert wird. Mit µ-XRD wurde Illit als dominierende Umgebung, in der Pu angereichert wurde, identifiziert und Siderit als eine redoxaktive Phase auftreten kann. Die Ergebnisse dieser Arbeit zeigen, dass die Sicherheit von OPA als Wirtsgestein eines Endlagers hoch-radioaktiver Abfälle positiv zu bewerten ist. rn
Resumo:
Natürliche hydraulische Bruchbildung ist in allen Bereichen der Erdkruste ein wichtiger und stark verbreiteter Prozess. Sie beeinflusst die effektive Permeabilität und Fluidtransport auf mehreren Größenordnungen, indem sie hydraulische Konnektivität bewirkt. Der Prozess der Bruchbildung ist sowohl sehr dynamisch als auch hoch komplex. Die Dynamik stammt von der starken Wechselwirkung tektonischer und hydraulischer Prozesse, während sich die Komplexität aus der potentiellen Abhängigkeit der poroelastischen Eigenschaften von Fluiddruck und Bruchbildung ergibt. Die Bildung hydraulischer Brüche besteht aus drei Phasen: 1) Nukleation, 2) zeitabhängiges quasi-statisches Wachstum so lange der Fluiddruck die Zugfestigkeit des Gesteins übersteigt, und 3) in heterogenen Gesteinen der Einfluss von Lagen unterschiedlicher mechanischer oder sedimentärer Eigenschaften auf die Bruchausbreitung. Auch die mechanische Heterogenität, die durch präexistierende Brüche und Gesteinsdeformation erzeugt wird, hat großen Einfluß auf den Wachstumsverlauf. Die Richtung der Bruchausbreitung wird entweder durch die Verbindung von Diskontinuitäten mit geringer Zugfestigkeit im Bereich vor der Bruchfront bestimmt, oder die Bruchausbreitung kann enden, wenn der Bruch auf Diskontinuitäten mit hoher Festigkeit trifft. Durch diese Wechselwirkungen entsteht ein Kluftnetzwerk mit komplexer Geometrie, das die lokale Deformationsgeschichte und die Dynamik der unterliegenden physikalischen Prozesse reflektiert. rnrnNatürliche hydraulische Bruchbildung hat wesentliche Implikationen für akademische und kommerzielle Fragestellungen in verschiedenen Feldern der Geowissenschaften. Seit den 50er Jahren wird hydraulisches Fracturing eingesetzt, um die Permeabilität von Gas und Öllagerstätten zu erhöhen. Geländebeobachtungen, Isotopenstudien, Laborexperimente und numerische Analysen bestätigen die entscheidende Rolle des Fluiddruckgefälles in Verbindung mit poroelastischen Effekten für den lokalen Spannungszustand und für die Bedingungen, unter denen sich hydraulische Brüche bilden und ausbreiten. Die meisten numerischen hydromechanischen Modelle nehmen für die Kopplung zwischen Fluid und propagierenden Brüchen vordefinierte Bruchgeometrien mit konstantem Fluiddruck an, um das Problem rechnerisch eingrenzen zu können. Da natürliche Gesteine kaum so einfach strukturiert sind, sind diese Modelle generell nicht sonderlich effektiv in der Analyse dieses komplexen Prozesses. Insbesondere unterschätzen sie die Rückkopplung von poroelastischen Effekten und gekoppelte Fluid-Festgestein Prozesse, d.h. die Entwicklung des Porendrucks in Abhängigkeit vom Gesteinsversagen und umgekehrt.rnrnIn dieser Arbeit wird ein zweidimensionales gekoppeltes poro-elasto-plastisches Computer-Model für die qualitative und zum Teil auch quantitativ Analyse der Rolle lokalisierter oder homogen verteilter Fluiddrücke auf die dynamische Ausbreitung von hydraulischen Brüchen und die zeitgleiche Evolution der effektiven Permeabilität entwickelt. Das Programm ist rechnerisch effizient, indem es die Fluiddynamik mittels einer Druckdiffusions-Gleichung nach Darcy ohne redundante Komponenten beschreibt. Es berücksichtigt auch die Biot-Kompressibilität poröser Gesteine, die implementiert wurde um die Kontrollparameter in der Mechanik hydraulischer Bruchbildung in verschiedenen geologischen Szenarien mit homogenen und heterogenen Sedimentären Abfolgen zu bestimmen. Als Resultat ergibt sich, dass der Fluiddruck-Gradient in geschlossenen Systemen lokal zu Störungen des homogenen Spannungsfeldes führen. Abhängig von den Randbedingungen können sich diese Störungen eine Neuausrichtung der Bruchausbreitung zur Folge haben kann. Durch den Effekt auf den lokalen Spannungszustand können hohe Druckgradienten auch schichtparallele Bruchbildung oder Schlupf in nicht-entwässerten heterogenen Medien erzeugen. Ein Beispiel von besonderer Bedeutung ist die Evolution von Akkretionskeilen, wo die große Dynamik der tektonischen Aktivität zusammen mit extremen Porendrücken lokal starke Störungen des Spannungsfeldes erzeugt, die eine hoch-komplexe strukturelle Entwicklung inklusive vertikaler und horizontaler hydraulischer Bruch-Netzwerke bewirkt. Die Transport-Eigenschaften der Gesteine werden stark durch die Dynamik in der Entwicklung lokaler Permeabilitäten durch Dehnungsbrüche und Störungen bestimmt. Möglicherweise besteht ein enger Zusammenhang zwischen der Bildung von Grabenstrukturen und großmaßstäblicher Fluid-Migration. rnrnDie Konsistenz zwischen den Resultaten der Simulationen und vorhergehender experimenteller Untersuchungen deutet darauf hin, dass das beschriebene numerische Verfahren zur qualitativen Analyse hydraulischer Brüche gut geeignet ist. Das Schema hat auch Nachteile wenn es um die quantitative Analyse des Fluidflusses durch induzierte Bruchflächen in deformierten Gesteinen geht. Es empfiehlt sich zudem, das vorgestellte numerische Schema um die Kopplung mit thermo-chemischen Prozessen zu erweitern, um dynamische Probleme im Zusammenhang mit dem Wachstum von Kluftfüllungen in hydraulischen Brüchen zu untersuchen.
Resumo:
Plasmonen stellen elektromagnetische Moden in metallischen Strukturen dar, in denen die quasifreien Elektronen im Metall kollektiv oszillieren. Während des letzten Jahrzehnts erfuhr das Gebiet der Plasmonik eine rasante Entwicklung, basierend auf zunehmenden Fortschritten der Nanostrukturierungsmethoden und spektroskopischen Untersuchungsmethoden, die zu der Möglichkeit von systematischen Einzelobjektuntersuchungen wohldefinierter Nanostrukturen führte. Die Anregung von Plasmonen resultiert neben einer radiativen Verstärkung der optischen Streuintensität im Fernfeld in einer nicht-radiativen Überhöhung der Feldstärke in unmittelbarer Umgebung der metallischen Struktur (Nahfeld), die durch die kohärente Ladungsansammlung an der metallischen Oberfläche hervorgerufen wird. Das optische Nahfeld stellt folglich eine bedeutende Größe für das fundamentale Verständnis der Wirkung und Wechselwirkung von Plasmonen sowie für die Optimierung plasmonbasierter Applikationen dar. Die große Herausforderung liegt in der Kompliziertheit des experimentellen Zugangs zum Nahfeld, der die Entwicklung eines grundlegenden Verständisses des Nahfeldes verhinderte.rnIm Rahmen dieser Arbeit wurde Photoemissionselektronenmikroskopie (PEEM) bzw. -mikrospektroskopie genutzt, um ortsaufgelöst die Eigenschaften nahfeld-induzierter Elektronenemission zu bestimmen. Die elektrodynamischen Eigenschaften der untersuchten Systeme wurden zudem mit numerischen, auf der Finiten Integrationsmethode basierenden Berechnungen bestimmt und mit den experimentellen Resultaten verglichen.rnAg-Scheiben mit einem Durchmesser von 1µm und einer Höhe von 50nm wurden mit fs-Laserstrahlung der Wellenlänge 400nm unter verschiedenen Polarisationszuständen angeregt. Die laterale Verteilung der infolge eines 2PPE-Prozesses emittierten Elektronen wurde mit dem PEEM aufgenommen. Aus dem Vergleich mit den numerischen Berechnungen lässt sich folgern, dass sich das Nahfeld an unterschiedlichen Stellen der metallischen Struktur verschiedenartig ausbildet. Insbesondere wird am Rand der Scheibe bei s-polarisierter Anregung (verschwindende Vertikalkomponente des elektrischen Felds) ein Nahfeld mit endlicher z-Komponente induziert, während im Zentrum der Scheibe das Nahfeld stets proportional zum einfallenden elektrischen Feld ist.rnWeiterhin wurde erstmalig das Nahfeld optisch angeregter, stark gekoppelter Plasmonen spektral (750-850nm) untersucht und für identische Nanoobjekte mit den entsprechenden Fernfeldspektren verglichen. Dies erfolgte durch Messung der spektralen Streucharakteristik der Einzelobjekte mit einem Dunkelfeldkonfokalmikroskop. Als Modellsystem stark gekoppelter Plasmonen dienten Au Nanopartikel in sub-Nanometerabstand zu einem Au Film (nanoparticle on plane, NPOP). Mit Hilfe dieser Kombination aus komplementären Untersuchungsmethoden konnte erstmalig die spektrale Trennung von radiativen und nicht-radiativen Moden stark gekoppelter Plasmonen nachgewiesen werden. Dies ist insbesondere für Anwendungen von großer Relevanz, da reine Nahfeldmoden durch den unterdrückten radiativen Zerfall eine große Lebensdauer besitzen, so dass deren Verstärkungswirkung besonders lange nutzbar ist. Ursachen für die Unterschiede im spektralen Verhalten von Fern- und Nahfeld konnten durch numerische Berechnungen identifiziert werden. Sie zeigten, dass das Nahfeld nicht-spärischer NPOPs durch die komplexe Oszillationsbewegung der Elektronen innerhalb des Spaltes zwischen Partikel und Film stark ortsabhängig ist. Zudem reagiert das Nahfeld stark gekoppelter Plasmonen deutlich empfindlicher auf strukturelle Störstellen des Resonators als die Fernfeld-Response. Ferner wurde der Elektronenemissionsmechanismus als optischer Feldemissionsprozess identifiziert. Um den Vorgang beschreiben zu können, wurde die Fowler-Nordheim Theorie der statischen Feldemission für den Fall harmonisch oszillierender Felder modifiziert.
Resumo:
Die vorliegende Arbeit behandelt die Anwendung der Rasterkraftmikroskopie auf die Untersuchung mesostrukturierter Materialien. Mesostrukturierte Materialien setzen sich aus einzelnen mesoskopen Bausteinen zusammen. Diese Untereinheiten bestimmen im Wesentlichen ihr charakteristisches Verhalten auf äußere mechanische oder elektrische Reize, weshalb diesen Materialien eine besondere Rolle in der Natur sowie im täglichen Leben zukommt. Ein genaues Verständnis der Selbstorganisation dieser Materialien und der Wechselwirkung der einzelnen Bausteine untereinander ist daher von essentieller Bedeutung zur Entwicklung neuer Synthesestrategien sowie zur Optimierung ihrer Materialeigenschaften. Die Charakterisierung dieser mesostrukturierten Materialien erfolgt üblicherweise mittels makroskopischer Analysemethoden wie der dielektrischen Breitbandspektroskopie, Thermogravimetrie sowie in Biegungsexperimenten. In dieser Arbeit wird gezeigt, wie sich diese Analysemethoden mit der Rasterkraftmikroskopie verbinden lassen, um mesostrukturierte Materialien zu untersuchen. Die Rasterkraftmikroskopie bietet die Möglichkeit, die Oberfläche eines Materials abzubilden und zusätzlich dazu seine quantitativen Eigenschaften, wie die mechanische Biegefestigkeit oder die dielektrische Relaxation, zu bestimmen. Die Übertragung makroskopischer Analyseverfahren auf den Nano- bzw. Mikrometermaßstab mittels der Rasterkraftmikroskopie erlaubt die Charakterisierung von räumlich sehr begrenzten Proben bzw. von Proben, die nur in einer sehr kleinen Menge (<10 mg) vorliegen. Darüberhinaus umfasst das Auflösungsvermögen eines Rasterkraftmikroskops, welche durch die Größe seines Federbalkens (50 µm) sowie seines Spitzenradius (5 nm) definiert ist, genau den Längenskalenbereich, der einzelne Atome mit der makroskopischen Welt verbindet, nämlich die Mesoskala. In dieser Arbeit werden Polymerfilme, kolloidale Nanofasern sowie Biomineralien ausführlicher untersucht.rnIm ersten Projekt werden mittels Rasterkraftmikroskopie dielektrische Spektren von mischbaren Polymerfilmen aufgenommen und mit ihrer lokalen Oberflächenstruktur korreliert. Im zweiten Projekt wird die Rasterkraftmikroskopie eingesetzt, um Biegeexperimente an kolloidalen Nanofasern durchzuführen und so ihre Brucheigenschaften genauer zu untersuchen. Im letzten Projekt findet diese Methode Anwendung bei der Charakterisierung der Biegeeigenschaften von Biomineralien. Des Weiteren erfolgt eine Analyse der organischen Zusammensetzung dieser Biomineralien. Alle diese Projekte demonstrieren die vielseitige Einsetzbarkeit der Rasterkraftmikroskopie zur Charakterisierung mesostrukturierter Materialien. Die Korrelation ihrer mechanischen und dielektrischen Eigenschaften mit ihrer topographischen Beschaffenheit erlaubt ein tieferes Verständnis der mesoskopischen Materialien und ihres Verhaltens auf die Einwirkung äußerer Stimuli.rn
Resumo:
The complex nature of the nucleon-nucleon interaction and the wide range of systems covered by the roughly 3000 known nuclides leads to a multitude of effects observed in nuclear structure. Among the most prominent ones is the occurence of shell closures at so-called ”magic numbers”, which are explained by the nuclear shell model. Although the shell model already is on duty for several decades, it is still constantly extended and improved. For this process of extension, fine adjustment and verification, it is important to have experimental data of nuclear properties, especially at crucial points like in the vicinity of shell closures. This is the motivation for the work performed in this thesis: the measurement and analysis of nuclear ground state properties of the isotopic chain of 100−130Cd by collinear laser spectroscopy.rnrnThe experiment was conducted at ISOLDE/CERN using the collinear laser spectroscopy apparatus COLLAPS. This experiment is the continuation of a run on neutral atomic cadmium from A = 106 to A = 126 and extends the measured isotopes to even more exotic species. The required gain in sensitivity is mainly achieved by using a radiofrequency cooler and buncher for background reduction and by using the strong 5s 2S1/2 → 5p 2P3/2 transition in singly ionized Cd. The latter requires a continuous wave laser system with a wavelength of 214.6 nm, which has been developed during this thesis. Fourth harmonic generation of an infrared titanium sapphire laser is achieved by two subsequent cavity-enhanced second harmonic generations, leading to the production of deep-UV laser light up to about 100 mW.rnrnThe acquired data of the Z = 48 Cd isotopes, having one proton pair less than the Z = 50 shell closure at tin, covers the isotopes from N = 52 up to N = 82 and therefore almost the complete region between the neutron shell closures N = 50 and N = 82. The isotope shifts and the hyperfine structures of these isotopes have been recorded and the magnetic dipole moments, the electric quadrupole moments, spins and changes in mean square charge radii are extracted. The obtained data reveal among other features an extremely linear behaviour of the quadrupole moments of the I = 11/2− isomeric states and a parabolic development in differences in mean square nuclear charge radii between ground and isomeric state. The development of charge radii between the shell closures is smooth, exposes a regular odd-even staggering and can be described and interpreted in the model of Zamick and Thalmi.
Resumo:
Phononic crystals, capable to block or direct the propagation of elastic/acoustic waves, have attracted increasing interdisciplinary interest across condensed matter physics and materials science. As of today, no generalized full description of elastic wave propagation in phononic structures is available, mainly due to the large number of variables determining the band diagram. Therefore, this thesis aims for a deeper understanding of the fundamental concepts governing wave propagation in mesoscopic structures by investigation of appropriate model systems. The phononic dispersion relation at hypersonic frequencies is directly investigated by the non-destructive technique of high-resolution spontaneous Brillouin light scattering (BLS) combined with computational methods. Due to the vector nature of the elastic wave propagation, we first studied the hypersonic band structure of hybrid superlattices. These 1D phononic crystals composed of alternating layers of hard and soft materials feature large Bragg gaps. BLS spectra are sensitive probes of the moduli, photo-elastic constants and structural parameters of the constituent components. Engineering of the band structure can be realized by introduction of defects. Here, cavity layers are employed to launch additional modes that modify the dispersion of the undisturbed superlattice, with extraordinary implications to the band gap region. Density of states calculations in conjunction with the associated deformation allow for unambiguous identication of surface and cavity modes, as well as their interaction with adjacent defects. Next, the role of local resonances in phononic systems is explored in 3D structures based on colloidal particles. In turbid media BLS records the particle vibration spectrum comprising resonant modes due to the spatial confinement of elastic energy. Here, the frequency and lineshapes of the particle eigenmodes are discussed as function of increased interaction and departure from spherical symmetry. The latter is realized by uniaxial stretching of polystyrene spheres, that can be aligned in an alternating electric field. The resulting spheroidal crystals clearly exhibit anisotropic phononic properties. Establishing reliable predictions of acoustic wave propagation, necessary to advance, e.g., optomechanics and phononic devices is the ultimate aim of this thesis.
Resumo:
Light pseudoscalar bosons, such as the axion that was originally proposed as a solution of the strong CP problem, would cause a new spin-dependent short-range interaction. In this thesis, an experiment is presented to search for axion mediated short-range interaction between a nucleon and the spin of a polarized bound neutron. This interaction cause a shift in the precession frequency of nuclear spin-polarized gases in the presence of an unpolarized mass. To get rid of magnetic field drifts co-located, nuclear spin polarized 3He and 129Xe atoms were used. The free nuclear spin precession frequencies were measured in a homogeneous magnetic guiding field of about 350nT using LTc SQUID detectors. The whole setup was housed in a magnetically shielded room at the Physikalisch Technische Bundesanstalt (PTB) in Berlin. With this setup long nuclear spin-coherence times, respectively, transverse relaxation times of 5h for 129Xe and 53h for 3He could be achieved. The results of the last run in September 2010 are presented which give new upper limits on the scalar-pseudoscalar coupling of axion-like particles in the axion-mass window from 10^(-2) eV to 10^(-6) eV. The laboratory upper bounds were improved by up to 4 orders of magnitude.
Resumo:
Am Mainzer Mikrotron können Lambda-Hyperkerne in (e,e'K^+)-Reaktionen erzeugt werden. Durch den Nachweis des erzeugten Kaons im KAOS-Spektrometer lassen sich Reaktionen markieren, bei denen ein Hyperon erzeugt wurde. Die Spektroskopie geladener Pionen, die aus schwachen Zweikörperzerfällen leichter Hyperkerne stammen, erlaubt es die Bindungsenergie des Hyperons im Kern mit hoher Präzision zu bestimmen. Neben der direkten Produktion von Hyperkernen ist auch die Erzeugung durch die Fragmentierung eines hoch angeregten Kontinuumszustands möglich. Dadurch können unterschiedliche Hyperkerne in einem Experiment untersucht werden. Für die Spektroskopie der Zerfallspionen stehen hochauflösende Magnetspektrometer zur Verfügung. Um die Grundzustandsmasse der Hyperkerne aus dem Pionimpuls zu berechnen, ist es erforderlich, dass das Hyperfragment vor dem Zerfall im Target abgebremst wird. Basierend auf dem bekannten Wirkungsquerschnitt der elementaren Kaon-Photoproduktion wurde eine Berechnung der zu erwartenden Ereignisrate vorgenommen. Es wurde eine Monte-Carlo-Simulation entwickelt, die den Fragmentierungsprozess und das Abbremsen der Hyperfragmente im Target beinhaltet. Diese nutzt ein statistisches Aufbruchsmodell zur Beschreibung der Fragmentierung. Dieser Ansatz ermöglicht für Wasserstoff-4-Lambda-Hyperkerne eine Vorhersage der zu erwartenden Zählrate an Zerfallspionen. In einem Pilotexperiment im Jahr 2011 wurde erstmalig an MAMI der Nachweis von Hadronen mit dem KAOS-Spektrometer unter einem Streuwinkel von 0° demonstriert, und koinzident dazu Pionen nachgewiesen. Es zeigte sich, dass bedingt durch die hohen Untergrundraten von Positronen in KAOS eine eindeutige Identifizierung von Hyperkernen in dieser Konfiguration nicht möglich war. Basierend auf diesen Erkenntnissen wurde das KAOS-Spektrometer so modifiziert, dass es als dedizierter Kaonenmarkierer fungierte. Zu diesem Zweck wurde ein Absorber aus Blei im Spektrometer montiert, in dem Positronen durch Schauerbildung abgestoppt werden. Die Auswirkung eines solchen Absorbers wurde in einem Strahltest untersucht. Eine Simulation basierend auf Geant4 wurde entwickelt mittels derer der Aufbau von Absorber und Detektoren optimiert wurde, und die Vorhersagen über die Auswirkung auf die Datenqualität ermöglichte. Zusätzlich wurden mit der Simulation individuelle Rückrechnungsmatrizen für Kaonen, Pionen und Protonen erzeugt, die die Wechselwirkung der Teilchen mit der Bleiwand beinhalteten, und somit eine Korrektur der Auswirkungen ermöglichen. Mit dem verbesserten Aufbau wurde 2012 eine Produktionsstrahlzeit durchgeführt, wobei erfolgreich Kaonen unter 0° Streuwinkel koninzident mit Pionen aus schwachen Zerfällen detektiert werden konnten. Dabei konnte im Impulsspektrum der Zerfallspionen eine Überhöhung mit einer Signifikanz, die einem p-Wert von 2,5 x 10^-4 entspricht, festgestellt werden. Diese Ereignisse können aufgrund ihres Impulses, den Zerfällen von Wasserstoff-4-Lambda-Hyperkernen zugeordnet werden, wobei die Anzahl detektierter Pionen konsistent mit der berechneten Ausbeute ist.