883 resultados para Vickers hardness
Resumo:
The residual stress distribution that arises in the glass matrix during cooling of a partially crystallized 17.2Na(2)O-32.1CaO-48.1SiO(2)-2.5P(2)O(5) (mol%) bioactive glass-ceramic was measured using the Vickers indentation method proposed by Zeng and Rowcliffe (ZR). The magnitude of the determined residual stress at the crystal/glass boundary was 1/4-1/3 of the values measured using X-ray diffraction (within the crystals) and calculated using Selsing`s model. A correction for the crack geometry factor, assuming a semi-elliptical shape, is proposed and then good agreement between experimental and theoretical values is found. Thus, if the actual crack geometry is taken into account, the indentation technique of ZR can be successfully used. In addition, a numerical model for the calculation of residual stresses that takes into account the hemispherical shape of the crystalline precipitates at a free surface was developed. The result is that near the sample surface, the radial component of the residual stress is increased by 70% in comparison with the residual stress calculated by Selsing`s model.
Resumo:
For a fixed family F of graphs, an F-packing in a graph G is a set of pairwise vertex-disjoint subgraphs of G, each isomorphic to an element of F. Finding an F-packing that maximizes the number of covered edges is a natural generalization of the maximum matching problem, which is just F = {K(2)}. In this paper we provide new approximation algorithms and hardness results for the K(r)-packing problem where K(r) = {K(2), K(3,) . . . , K(r)}. We show that already for r = 3 the K(r)-packing problem is APX-complete, and, in fact, we show that it remains so even for graphs with maximum degree 4. On the positive side, we give an approximation algorithm with approximation ratio at most 2 for every fixed r. For r = 3, 4, 5 we obtain better approximations. For r = 3 we obtain a simple 3/2-approximation, achieving a known ratio that follows from a more involved algorithm of Halldorsson. For r = 4, we obtain a (3/2 + epsilon)-approximation, and for r = 5 we obtain a (25/14 + epsilon)-approximation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Sulfated polysaccharides comprise a complex group of macromolecules with a range of several biological activities, including antiviral activity, anticoagulant, antiproliferative, antiherpética, antitumor, anti-inflammatory and antioxidant. These anionic polymers are widely distributed in tissues of vertebrates, invertebrates and algae. Seaweeds are the most abundant sources of sulfated polysaccharides in nature. The green algal sulfated polysaccharides are homo or heteropolysaccharides comprised of galactose, glucose, arabinose and/or glucuronic acid. They are described as anticoagulant, anti-inflammatory, antiviral, anti-angiogenic, antitumor compounds. However, there are few studies about elucidation and evaluation of biological/pharmacological effects of sulfated polysaccharides obtained from green algae, for example, there is only one paper reporting the antinociceptive activity of sulfated polysaccharides of these algae. Therefore this study aimed to obtain sulfated polysaccharides of green seaweed Codium isthmocladum and evaluates them as potential antinociceptive agents. Thus, in this study, the total extract of polysaccharides of green alga C. isthmocladum was obtained by proteolytic digestion, followed by fractionation resulting in five fractions (F0.3, F0.5, F0.7, F0.9 and F1.2) by sequential precipitation with acetone. Using the test of abdominal contractions we observed that the fraction F0.9 was the most potent antinociceptive aompound. F0.9 consists mainly of a sulfated heterogalactana. More specific tests showed that Fo.9 effect is dose and time dependent, reaching a maximum at 90 after administration (10 mg / kg of animal). F0.9 is associated with TRPV1 and TRPA1 receptors and inhibits painful sensation in animals. Furthermore, F0.9 inhibits the migration of lymphocytes induced peritonitis test. On the other hand, stimulates the release of NO and TNF-α. These results suggest that F0.9 has the potential to be used as a source of sulfated galactan antinociceptive and anti-inflammatory
Resumo:
Ceramics materials have good properties including chemical stability, high hardness and wear resistance. Moreover, due to its fragility, can suffer failure under relatively low levels of tension. Actually zirconia is the material of choice in metal free dental prostheses used in dentistry due its inertia in physiological environment, good bending strength, hardness and fracture toughness. The alumina and mixed tungsten and titanium carbides additions, acting as reinforcement elements in the zirconia matrix, have as their main objective the improvement of mechanical properties of this material. In this work, samples of zirconia, zirconia with 30% wt of alumina and zirconia with 30% wt mixed carbides were analyzed. The samples were sintered by uniaxial hot pressing on 30 MPa pressure, for 1 hour in an argon atmosphere. They were physically characterized by porosity and density measurements, and mechanically by 3-points bending strength and Vickers microhardness. The X-ray diffraction was used for the phase identifications and microstructure was examined by scanning electron microscopy (SEM). The addition of mixed carbides as reinforcement elements in zirconia matrix provides improvements in all properties analyzed in this work. The alumina addition has dropped the zirconia strength, although it caused improvement in other properties
Resumo:
This masther dissertation presents a contribution to the study of 316L stainless steel sintering aiming to study their behavior in the milling process and the effect of isotherm temperature on the microstructure and mechanical properties. The 316L stainless steel is a widely used alloy for their high corrosion resistance property. However its application is limited by the low wear resistance consequence of its low hardness. In previous work we analyzed the effect of sintering additives as NbC and TaC. This study aims at deepening the understanding of sintering, analyzing the effect of grinding on particle size and microstructure and the effect of heating rate and soaking time on the sintered microstructure and on their microhardness. Were milled 316L powders with NbC at 1, 5 and 24 hours respectively. Particulates were characterized by SEM and . Cylindrical samples height and diameter of 5.0 mm were compacted at 700 MPa. The sintering conditions were: heating rate 5, 10 and 15◦C/min, temperature 1000, 1100, 1200, 1290 and 1300◦C, and soaking times of 30 and 60min. The cooling rate was maintained at 25◦C/min. All samples were sintered in a vacuum furnace. The sintered microstructure were characterized by optical and electron microscopy as well as density and microhardness. It was observed that the milling process has an influence on sintering, as well as temperature. The major effect was caused by firing temperature, followed by the grinding and heating rate. In this case, the highest rates correspond to higher sintering.
Resumo:
Nickel alloys are frequently used in applications that require resistance at high temperatures associated with resistance to corrosion. Alloys of Ni-Si-C can be obtained by means of powder metallurgy in which powder mixtures are made of metallic nickel powders with additions of various alloying carriers for such were used in this study SiC, Si3N4 or Si metal with graphite. Carbonyl Ni powder with mean particle size of 11 mM were mixed with 3 wt% of SiC powders with an average particle size of 15, 30 and 50 μm and further samples were obtained containing 4 to 5% by mass of SiC with average particle size of 15 μm. Samples were also obtained by varying the carrier alloy, these being Si3N4 powder with graphite, with average particle size of 1.5 and 5 μm, respectively. As a metallic Si graphite with average particle size of 12.5 and 5 μm, respectively. The reference material used was nickel carbonyl sintered without adding carriers. Microstructural characterization of the alloys was made by optical microscopy and scanning electron microscopy with semi-quantitative chemical analysis. We determined the densities of the samples and measurement of microhardness. We studied the dissociation of carriers alloy after sintering at 1200 ° C for 60 minutes. Was evaluated also in the same sintering conditions, the influence of the variation of average particle size of the SiC carrier to the proportion of 3% by mass. Finally, we studied the influence of variation of the temperatures of sintering at 950, 1080 and 1200 ° C without landing and also with heights of 30, 60, 120 and 240 minutes for sintering where the temperature was 950 °C. Dilatometry curves showed that the SiC sintered Ni favors more effectively than other carriers alloy analyzed. SiC with average particle size of 15 μm active sintering the alloy more effectively than other SiC used. However, with the chemical and morphological analyzes for all leagues, it was observed that there was dissociation of SiC and Si3N4, as well as diffusion of Si in Ni matrix and carbon cluster and dispersed in the matrix, which also occurred for the alloys with Si carriers and metallic graphite. So the league that was presented better results containing Si Ni with graphite metallic alloy as carriers, since this had dispersed graphite best in the league, reaching the microstructural model proposed, which is necessary for material characteristic of solid lubricant, so how we got the best results when the density and hardness of the alloy
Resumo:
The titanium and titanium alloys are widely used as biomaterial in biomedical device and so research have been developed aiming to improve and/or better to understand interaction biomaterial/biological environment. The process for manufacturing of this titanium implants usually involves a series of thermal and mechanical processes which have consequence on the final product. The heat treatments are usually used to obtain different properties for each application. In order to understand the influence of these treatments on the biological response of the surface, it was done, in this work, different heat treatments in titanium and analyzed their influence on the morphology, adhesion and proliferation of the pre-osteoblastic cells (MC3T3-E1). For such heat-treated titanium disks were characterized by optical microscopy, contact angle, surface energy, roughness, microhardness, X-ray diffraction and scanning through the techniques (BSE, EDS and EBSD). For the analysis of biological response were tested by MTT proliferation, adhesion by crystal violet and β1 integrin expression by flow cytometry. It was found that the presence of a microstructure very orderly, defined by a chemical attack, cells tend to stretch in the same direction of orientation of the material microstructure. When this order does not happen, the most important factor influencing cell proliferation is the residual stress, indicated by the hardness of the material. This way the disks with the highest level state of residual stress also showed increased cell proliferation
Resumo:
The competitiveness of the trade generated by the higher availability of products with lower quality and cost promoted a new reality of industrial production with small clearances. Track deviations at the production are not discarded, uncertainties can statistically occur. The world consumer and the Brazilian one are supported by the consumer protection code, in lawsuits against the products poor quality. An automobile is composed of various systems and thousands of constituent parts, increasing the likelihood of failure. The dynamic and security systems are critical in relation to the consequences of possible failures. The investigation of the failure gives us the possibility of learning and contributing to various improvements. Our main purpose in this work is to develop a systematic, specific methodology by investigating the root cause of the flaw occurred on an axle end of the front suspension of an automobile, and to perform comparative data analyses between the fractured part and the project information. Our research was based on a flaw generated in an automotive suspension system involved in a mechanical judicial cause, resulting in property and personal damages. In the investigations concerning the analysis of mechanical flaws, knowledge on materials engineering plays a crucial role in the process, since it enables applying techniques for characterizing materials, relating the technical attributes required from a respective part with its structure of manufacturing material, thus providing a greater scientific contribution to the work. The specific methodology developed follows its own flowchart. In the early phase, the data in the records and information on the involved ones were collected. The following laboratory analyses were performed: macrography of the fracture, micrography with SEM (Scanning Electron Microscope) of the initial and final fracture, phase analysis with optical microscopy, Brinell hardness and Vickers microhardness analyses, quantitative and qualitative chemical analysis, by using X-ray fluorescence and optical spectroscopy for carbon analysis, qualitative study on the state of tension was done. Field data were also collected. In the analyses data of the values resulting from the fractured stock parts and the design values were compared. After the investigation, one concluded that: the developed methodology systematized the investigation and enabled crossing data, thus minimizing diagnostic error probability, the morphology of the fracture indicates failure by the fatigue mechanism in a geometrically propitious location, a tension hub, the part was subjected to low tensions by the sectional area of the final fracture, the manufacturing material of the fractured part has low ductility, the component fractured in an earlier moment than the one recommended by the manufacturer, the percentages of C, Si, Mn and Cr of the fractured part present values which differ from the design ones, the hardness value of the superior limit of the fractured part is higher than that of the design, and there is no manufacturing uniformity between stock and fractured part. The work will contribute to optimizing the guidance of the actions in a mechanical engineering judicial expertise
Resumo:
Wear mechanisms and thermal history of two non-conforming sliding surfaces was investigated in laboratory. A micro-abrasion testing setup was used but the traditional rotative sphere method was substituted by a cylindrical surface of revolution which included seven sharp angles varying between 15o to 180o. The micro-abrasion tests lead to the investigation on the polyurethane response at different contact pressures. For these turned counterfaces with and without heat treatment. Normal load and sliding speeds were changed. The sliding distance was fixed at 5 km in each test. The room and contact temperatures were measured during the tests. The polyurethane was characterized using tensile testing, hardness Shore A measurement, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Thermomechanical Analyze (TMA). The Vickers micro-hardness of the steel was measured before and after the heat treatment and the metallographic characterization was also carried out. Worn surface of polyurethane was analysed using Scanning Electron Microscope (SEM) and EDS (Electron Diffraction Scanning) microanalyses. Single pass scratch testing in polyurethane using indenters with different contact angles was also carried out. The scar morphology of the wear, the wear mechanism and the thermal response were analyzed in order to correlate the conditions imposed by the pressure-velocity pair to the materials in contact. Eight different wear mechanisms were identified on the polyurethane surface. It was found correlation between the temperature variation and the wear scar morphology.
Resumo:
Objectives The purpose of this work was to submit the Nitinol files to plasma immersion ion implantation (PIII) and evaluate the effects of the surface treatment. Materials and Methods Wear resistance was determined in vitro by using an equipment for the application of horizontal movements on previously prepared notched plates made of resin. Vickers microhardness was measured in plates and files, before and after surface treatment and the surface chemical composition of the instruments was determined by X-rays photoelectron spectroscopy. Results The hardness values found for the treated Nitinol files were significantly lower than the hardness values measured before the implantation process. The comparison of commercially available instruments shows that the wear resistance of the stainless steel file is higher than the resistance of the Nitinol. Conclusions The results found led to the conclusion that the surface treatment significantly increased the Nitinol files wear resistance.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)