Approximation algorithms and hardness results for the clique packing problem


Autoria(s): CHATAIGNER, F.; MANIC, G.; WAKABAYASHI, Y.; YUSTER, R.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

For a fixed family F of graphs, an F-packing in a graph G is a set of pairwise vertex-disjoint subgraphs of G, each isomorphic to an element of F. Finding an F-packing that maximizes the number of covered edges is a natural generalization of the maximum matching problem, which is just F = {K(2)}. In this paper we provide new approximation algorithms and hardness results for the K(r)-packing problem where K(r) = {K(2), K(3,) . . . , K(r)}. We show that already for r = 3 the K(r)-packing problem is APX-complete, and, in fact, we show that it remains so even for graphs with maximum degree 4. On the positive side, we give an approximation algorithm with approximation ratio at most 2 for every fixed r. For r = 3, 4, 5 we obtain better approximations. For r = 3 we obtain a simple 3/2-approximation, achieving a known ratio that follows from a more involved algorithm of Halldorsson. For r = 4, we obtain a (3/2 + epsilon)-approximation, and for r = 5 we obtain a (25/14 + epsilon)-approximation. (C) 2008 Elsevier B.V. All rights reserved.

FAPESP[05/53840-0]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[2006/01817-7]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq[490333/04-4]

CNPq[308138/04-0]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

PRONEX-FAPESPJCNPq[2003/09925-5]

Identificador

DISCRETE APPLIED MATHEMATICS, v.157, n.7, p.1396-1406, 2009

0166-218X

http://producao.usp.br/handle/BDPI/30393

10.1016/j.dam.2008.10.017

http://dx.doi.org/10.1016/j.dam.2008.10.017

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Discrete Applied Mathematics

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #Approximation algorithms #APX-hardness #Clique #Packing #Triangle #DEGREE GRAPHS #TRIANGLES #Mathematics, Applied
Tipo

article

original article

publishedVersion