730 resultados para Teaching science
Resumo:
A new approach was taken to delivering a challenging "stewarship of land" unit to over 350 predominantly first year built environment students stewardship. The new approach involved incorporating environmental and planning law into the syllabus, exposing students to a wide range of statutes, selecting legal cases according to a et of criteria and revisiting the material using different modes of delivery and teaching resources. To evaluate the effectiveness of the new approach, the students were surveyed to elicit their learning experience and preferences. The survey found that most students perceived learning about environmental and planning law, including legal cases, worthwhile.----- Areas identified by the surcey for improvement included the perception by some students that: environmenatl and planning law is irrelevant to their discipline and future caree; studying law is dull and sometimes daunting; and the prescribed reading could be omitted.----- To address student perceptions, it is proposed to reorder the topics commencing with local, charismatic topics, while explanding international content and cases, to enlarge and enhance the repertoire of video clips to include sites of legal cawses and development projects, and to reformat the online weekly quizzes to promote reading of primary material.----- Overall, the approach to teaching environmental and planning law to built environment students, including the criteria for selecting legal cases, described in this paper, was found to be effective.
Resumo:
There are two aspects to the problem of digital scholarship and pedagogy. One is to do with scholarship; the other with pedagogy. In scholarship, the association of knowledge with its printed form remains dominant. In pedagogy, the desire to abandon print for ‘new’ media is urgent, at least in some parts of the academy. Film and media studies are thus at the intersection of opposing forces – pulling the field ‘back’ to print and ‘forward’ to digital media. These tensions may be especially painful in a field whose own object of study is another form of communication, neither print nor digital but broadcast. Although print has been overtaken in the popular marketplace by audio-visual forms, this was never achieved in the domain of scholarship. Even when it is digitally distributed, the output of research is still a ‘paper.’ But meanwhile, in the realm of teaching, production- and practice-based pedagogy has become firmly established. Nevertheless a disjunction remains, between high-end scholarship in research universities and vocational training in teaching institutions; but neither is well equipped to deal with the digital challenge.
Resumo:
In architecture courses, instilling a wider understanding of the industry specific representations practiced in the Building Industry is normally done under the auspices of Technology and Science subjects. Traditionally, building industry professionals communicated their design intentions using industry specific representations. Originally these mainly two dimensional representations such as plans, sections, elevations, schedules, etc. were produced manually, using a drawing board. Currently, this manual process has been digitised in the form of Computer Aided Design and Drafting (CADD) or ubiquitously simply CAD. While CAD has significant productivity and accuracy advantages over the earlier manual method, it still only produces industry specific representations of the design intent. Essentially, CAD is a digital version of the drawing board. The tool used for the production of these representations in industry is still mainly CAD. This is also the approach taken in most traditional university courses and mirrors the reality of the situation in the building industry. A successor to CAD, in the form of Building Information Modelling (BIM), is presently evolving in the Construction Industry. CAD is mostly a technical tool that conforms to existing industry practices. BIM on the other hand is revolutionary both as a technical tool and as an industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team. Essentially, BIM builds any building twice: once in the virtual world, where any faults are resolved, and finally, in the real world. There is, however, no established model for learning through the use of this technology in Architecture courses. Queensland University of Technology (QUT), a tertiary institution that maintains close links with industry, recognises the importance of equipping their graduates with skills that are relevant to industry. BIM skills are currently in increasing demand throughout the construction industry through the evolution of construction industry practices. As such, during the second half of 2008, QUT 4th year architectural students were formally introduced for the first time to BIM, as both a technology and as an industry practice. This paper will outline the teaching team’s experiences and methodologies in offering a BIM unit (Architectural Technology and Science IV) at QUT for the first time and provide a description of the learning model. The paper will present the results of a survey on the learners’ perspectives of both BIM and their learning experiences as they learn about and through this technology.
Resumo:
Australia has had many inquiries into teaching and teacher education over the last decade. Standards for teaching have been produced by national education systems with many state systems following suit. The Queensland College of Teachers (QCT) advocates ten professional teaching standards for teachers and preservice teachers. How can preservice teachers be measured against advocated professional standards? This study investigated 106 second-year preservice teachers’ perceptions of their development against the QCT standards. A pretest-posttest survey instrument was developed based on the QCT standards and administered to these preservice teachers before and after their science education coursework. Percentages, ANOVAs and t-tests were generated to analyse the results. Findings indicated that 22 of the 24 paired pretest-posttest items were highly significant (p<.001). Percentage increases ranged from as low as 27% in the pretest to as high as 97% in the posttest, yet, there were two items with lower significance (i.e., working in professional science education teams and supporting students’ participation in society). Understanding preservice teachers’ perceptions of their abilities to implement these standards may be a step towards the process of determining the achievement of teaching standards; however, more rigorous measurements will need to be developed for both teachers and preservice teachers. University coursework and related assessments can provide an indication of achieving these standards, especially authentic assessment of preservice teachers’ practices.
Resumo:
A curriculum for a university-level course called Business Process Modeling is presented in order to provide guidance for the increasing number of institutions who are currently developing such contents. The course caters to undergraduate and post graduate students. Its content is drawn from recent research, industry practice, and established teaching material, and teaches ways of specifying business processes for the analysis and design of process-aware information systems. The teaching approach is a blend of lectures and classroom exercises with innovative case studies, as well as reviews of research material. Students are asked to conceptualize, analyze, and articulate real life process scenarios. Tutorials and cheat sheets assist with the learning experience. Course evaluations from 40 students suggest the adequacy of the teaching approach. Specifically, evaluations show a high degree of satisfaction with course relevance, content presentation, and teaching approach.
Resumo:
Engineering education is underrepresented in Australia at the primary, middle school and high school levels. Understanding preservice teachers’ preparedness to be involved in engineering will be important for developing an engineering curriculum. This study administered a literature-based survey to 36 preservice teachers, which gathered data about their perceptions of engineering and their predispositions for teaching engineering. Findings indicated that the four constructs associated with the survey had acceptable Cronbach alpha scores (i.e., personal professional attributes .88, student motivation .91, pedagogical knowledge .91, and fused curricula .89). However, there was no “disagree” or “strongly disagree” response greater than 22% for any of the 25 survey items. Generally, these preservice teachers indicated predispositions for teaching engineering in the middle school. Extensive scaffolding and support with education programs will assist preservice teachers to develop confidence in this field. Governments and education departments need to recognise the importance of engineering education, and universities must take a stronger role in developing engineering education curricula.
Resumo:
The implementation of effective science programmes in primary schools is of continuing interest and concern for professional developers. As part of the Australian Academy of Science's approach to creating an awareness of Primary Investigations, a project team trialled a series of satellite television broadcasts of lessons related to two units of the curriculum for Year 3 and 4 children in 48 participating schools. The professional development project entitled Simply Science, included a focused component for the respective classroom teachers, which was also conducted by satellite. This paper reports the involvement of a Year 4 teacher in the project and describes her professional growth. Already an experienced and confident teacher, no quantitative changes in science teaching self efficacy were detected. However, her pedagogical content knowledge and confidence to teach science in the concept areas of matter and energy were enhanced. Changes in the teacher's views about the co-operative learning strategies espoused by Primary Investigations were also evident. Implications for the design of professional development programmes for primary science teachers are discussed.
Resumo:
The PISA assessment instruments for students’ scientific literacy in 2000, 2003 and 2006 have each consisted of units made up of a real world context involving Science and Technology, about which students are asked a number of cognitive and affective questions. This paper discusses a number of issues from this use of S&T contexts in PISA and the implications they have for the current renewed interest in context-based science education. Suitably chosen contexts can engage both boys and girls. Secondary analyses of the students’ responses using the contextual sets of items as the unit of analysis provides new information about the levels of performance in PISA 2006 Science. .Embedding affective items in the achievement test did not lead to gender/context interactions of significance, and context interactions were less than competency ones. A number of implications for context-based science teaching and learning are outlined and the PISA 2006 Science test is suggested as a model for its assessment.
Resumo:
Although the sciences were being taught in Australian schools well before the Second World War, the only evidence of research studies of this teaching is to be found in the report, published by ACER in 1932 of Roy Stanhope’s survey of the teaching of chemistry in New South Wales and a standardized test he had developed. Roy Stanhope was a science teacher with a research masters degree in chemistry. He had won a scholarship to go to Stanford University for doctoral studies, but returned after one year when his scholarship was not extended. He went on to be a founder in 1943 of the Australian Science Teachers Association (ASTA), which honours this remarkable pioneer through its annual Stanhope Oration. In his retirement Stanhope undertook a comparative study of science
Resumo:
Policy has been a much neglected area for research in science education. In their neglect of policy studies, researchers have maintained an ongoing naivete about the politics of science education. In doing so, they often overestimate the implications of their research findings about practice and ignore the interplay between the stakeholders beyond and in-school who determine the nature of the curriculum for science education and its enacted character. Policies for education (and science education in particular) always involve authority and values, both of which raise sets of fascinating questions for research. The location of authority for science education differs across educational systems in ways that affect the role teachers are expected to play. Policies very often value some groups in society over others, as the long history of attempts to provide science for all students testifies. As research on teaching/learning science identifies pedagogies that have widespread effectiveness, the policy issue of mandating these becomes important. Illustrations of successful policy to practice suggest that establishing conditions that will facilitate the intended implementation is critically important. The responsibility of researchers for critiquing and establishing policy for improving the practice of science education is discussed, together with the role research associations could play if they are to claim their place as key stakeholders in science education.
Resumo:
Student underachievement in the middle years (typically Years 4 to 9) is a concern in education. Incorporating Information and Communication Technologies (ICT) in assessment that is aligned to teaching and learning has the potential to engage students in higher cognitive processes that lead to increased student achievement. To examine this proposition an investigation was undertaken into teachers’ perceptions of alignment and the implications of those for student achievement in ICT enhanced middle years assessment tasks. This investigation used a collective case study design underpinned by socio-cultural theory. Two methods were used for data collection, namely, semi-structured interviews with individual teachers and a focus group discussion with teachers and another with students. Findings revealed teachers’ perceptions that alignment: assists in mediating achievement of learning outcomes in quality middle years assessment tasks, assists in creating a challenging but supportive environment in which positive learning dispositions and success is encouraged for all students, and contributes to more rigorous use of ICT in assessment. The process of implementing alignment was found to be complex but assisted through prioritising particular practices. These findings enabled the development of eight steps which serve as a guide to the effective implementation of alignment in middle years assessment tasks.
Resumo:
Research in science education is now an international activity. This book asks for the first time, Does this research activity have an identity?-It uses the significant studies of more than 75 researchers in 15 countries to see to what extent they provide evidence for an identity as a distinctive field of research.-It considers trends in the research over time, and looks particularly at what progression in the research entails.-It provides insight into how researchers influence each other and how involvement in research affects the being of the researcher as a person.-It addresses the relation between research and practice in a manner that sees teaching and learning in the science classroom as interdependent with national policies and curriculum traditions about science. It gives graduate students and other early researchers an unusual overview of their research area as a whole. Established researchers will be interested in, and challenged by, the identity the author ascribes to the research and by the plea he makes for the science content itself to be seen as problematic.
Resumo:
For a number of years now it has been evident that the major issue facing science educators in the more developed countries of the world is the quantitative decline in enrolments in the senior secondary sciences, particularly the physical sciences, and in the number of higher achieving students applying for places in universities to undertake further studies in science. The deep malaise in school science to which these quantitative measures point has been elucidated by more qualitative studies of the students’ experience of studying science in secondary school in several of these countries (Sweden, Lindahl (2003); England, Simon and Osborne (2002); and Australia, Lyons (2005)). Remarkably concordant descriptions of these experiences can be summarized as: School science is: • transmission of knowledge from the teacher or the textbook to the students. • about content that is irrelevant and boring to our lives. • difficult to learn in comparison with other subjects Incidentally, the Australian study only involved consistently high achieving students; but even so, most of them found science more difficult than other more interesting subjects, and concluded that further science studies should be avoided unless they were needed for some career purpose. Other more representative confirmations of negative evaluations of the science curricula across Australia (and in particular states) are now available in Australia, from the large scale reviews of Goodrum, Hackling and Rennie (2001) and from the TIMSS (2002). The former reported that well under half of secondary students find the science at school relevant to my future, useful ion everyday life, deals with things I am concerned with and helps me make decisions about my health.. TIMSS found that 62 and 65 % of females and males in Year 4 agree with I like learning science, but by Year 8 only 26 and 33 % still agree. Students in Japan have been doubly notably because of (a) their high performance in international measures of science achievement like TIMSS and PISA and (b) their very low response to items in these studies which relate to interest in science. Ogura (2003) reported an intra-national study of students across Years 6-9 (upper primary through Junior High); interest in a range of their subjects (including science) that make up that country’s national curriculum. There was a steady decline in interest in all these subjects which might have indicated an adolescent reaction against schooling generally. However, this study went on to ask the students a further question that is very meaningful in the Japanese context, If you discount the importance of this subject for university entrance, is it worth studying? Science and mathematics remained in decline while all the other subjects were seen more positively. It is thus ironic, at a time when some innovations in curriculum and other research-based findings are suggesting ways that these failures of school science might be corrected, to find school science under a new demands that come from quite outside science education, and which certainly do not have the correction of this malaise as a priority. The positive curricular and research findings can be characterized as moves from within science education, whereas the new demands are moves that come from without science education. In this paper I set out these two rather contrary challenges to the teaching of science as it is currently practised, and go on to suggest a way forward that could fruitfully combine the two.
Resumo:
Efforts to improve mathematics and science content knowledge have in many institutions required redefining teacher education through new teaching and learning. See, for example, Peard & Pumadevi (2007) for an account of one such attempt involving the development of a Foundations Unit, Scientific and Quantitative Literacy. This unit is core for all first year pre-service primary teacher education students at Queensland University of Technology (QUT) and two Education Institutes in Malaysia, Institute Perguruan Raja Melewar (IPRM), and Institute Perguruan Teknik (IPT) Kuala Lumpur. Since then, QUT has modified the unit to adopt a thematic approach to the same content. An aim of the unit rewrite was the development of a positive attitude and disposition to the teaching and learning of mathematics and science, with a curiosity and willingness to speculate about and explore the world. Numeracy was specifically identified within the mathematics encountered and appropriately embedded in the science learning area. The importance of the ability to engage in communication of and about mathematics and science was considered crucial to the development of pre-service primary teachers. Cognisance was given to the appropriate selection and use of technology to enhance learning - digital technologies were embedded in the teaching, learning and assessment of the unit to avoid being considered as an optional extra. This was achieved around the theme of “the sustainable school”. This „sustainability‟ theme was selected due to its prominence in Australia‟s futures-oriented National Curriculum which will be implemented in 2011. This paper outlines the approach taken to the implementation of the unit and discusses early indicators of its effectiveness.