893 resultados para Space-time Cube
Resumo:
The quantity and quality of spatial data are increasing rapidly. This is particularly evident in the case of movement data. Devices capable of accurately recording the position of moving entities have become ubiquitous and created an abundance of movement data. Valuable knowledge concerning processes occurring in the physical world can be extracted from these large movement data sets. Geovisual analytics offers powerful techniques to achieve this. This article describes a new geovisual analytics tool specifically designed for movement data. The tool features the classic space-time cube augmented with a novel clustering approach to identify common behaviour. These techniques were used to analyse pedestrian movement in a city environment which revealed the effectiveness of the tool for identifying spatiotemporal patterns. © 2014 Taylor & Francis.
Resumo:
Recent technological advances have increased the quantity of movement data being recorded. While valuable knowledge can be gained by analysing such data, its sheer volume creates challenges. Geovisual analytics, which helps the human cognition process by using tools to reason about data, offers powerful techniques to resolve these challenges. This paper introduces such a geovisual analytics environment for exploring movement trajectories, which provides visualisation interfaces, based on the classic space-time cube. Additionally, a new approach, using the mathematical description of motion within a space-time cube, is used to determine the similarity of trajectories and forms the basis for clustering them. These techniques were used to analyse pedestrian movement. The results reveal interesting and useful spatiotemporal patterns and clusters of pedestrians exhibiting similar behaviour.
Resumo:
WHENEVER I talk to my students about the requisites for writing, I always tell them that they need at least two things: space and time. Time, which we frequently describe through verbs of motion such as ‘flow’ or ‘flux’, and space, which we usually view as emptiness or the absence of matter. I.e., two dimensions, which are co-dependent, are not only features of the physical world but mental constructs that are elementary to the faculty of cognition...
Resumo:
In this letter, we propose a simple space-time code to simultaneously achieve both the space and time diversities over time dispersive channels by using two-dimensional lattice constellations and Alamouti codes. The proposed scheme still reserves full space diversity and double-real-symbols joint maximum likelihood decoding which has the similar computation complexity as the Alamouti code.
Resumo:
The pion electromagnetic form factor is calculated in the space- and time-like regions from -10 (GeV/c)2 up to 10 (GeV/c)2, within a front-form model. The dressed photon vertex where a photon decays in a quark-antiquark pair is depicted generalizing the vector meson dominance ansatz, by means of the vector meson vertex functions. An important feature of our model is the description of the on-mass-shell vertex functions in the valence sector, for the pion and the vector mesons, through the front-form wave functions obtained within a realistic quark model. The theoretical results show an excellent agreement with the data in the space-like region, while in the time-like region the description is quite encouraging. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.
Resumo:
Although there is an increasing recognition of the impacts of climate change on communities, residents often resist changing their lifestyle to reduce the effects of the problem. By using a landscape architectural design medium, this paper argues that public space, when designed as an ecological system, has the capacity to create social and environmental change and to increase the quality of the human environment. At the same time, this ecological system can engage residents, enrich the local economy, and increase the social network. Through methods of design, research and case study analysis, an alternative master plan is proposed for a sustainable tourism development in Alacati, Turkey. Our master plan uses local geographical, economic and social information within a sustainable landscape architectural design scheme that addresses the key issues of ecology, employment, public space and community cohesion. A preliminary community empowerment model (CEM) is proposed to manage the designs. The designs address: the coexistence of local agricultural and sustainable energy generation; state of the art water management; and the functional and sustainable social and economic interrelationship of inhabitants, NGOs, and local government.
Resumo:
In this study I look at what people want to express when they talk about time in Russian and Finnish, and why they use the means they use. The material consists of expressions of time: 1087 from Russian and 1141 from Finnish. They have been collected from dictionaries, usage guides, corpora, and the Internet. An expression means here an idiomatic set of words in a preset form, a collocation or construction. They are studied as lexical entities, without a context, and analysed and categorized according to various features. The theoretical background for the study includes two completely different approaches. Functional Syntax is used in order to find out what general meanings the speaker wishes to convey when talking about time and how these meanings are expressed in specific languages. Conceptual metaphor theory is used for explaining why the expressions are as they are, i.e. what kind of conceptual metaphors (transfers from one conceptual domain to another) they include. The study has resulted in a grammatically glossed list of time expressions in Russian and Finnish, a list of 56 general meanings involved in these time expressions and an account of the means (constructions) that these languages have for expressing the general meanings defined. It also includes an analysis of conceptual metaphors behind the expressions. The general meanings involved turned out to revolve around expressing duration, point in time, period of time, frequency, sequence, passing of time, suitable time and the right time, life as time, limitedness of time, and some other notions having less obvious semantic relations to the others. Conceptual metaphor analysis of the material has shown that time is conceptualized in Russian and Finnish according to the metaphors Time Is Space (Time Is Container, Time Has Direction, Time Is Cycle, and the Time Line Metaphor), Time Is Resource (and its submapping Time Is Substance), Time Is Actor; and some characteristics are added to these conceptualizations with the help of the secondary metaphors Time Is Nature and Time Is Life. The limits between different conceptual metaphors and the connections these metaphors have with one another are looked at with the help of the theory of conceptual integration (the blending theory) and its schemas. The results of the study show that although Russian and Finnish are typologically different, they are very similar both in the needs of expression their speakers have concerning time, and in the conceptualizations behind expressing time. This study introduces both theoretical and methodological novelties in the nature of material used, in developing empirical methodology for conceptual metaphor studies, in the exactness of defining the limits of different conceptual metaphors, and in seeking unity among the different facets of time. Keywords: time, metaphor, time expression, idiom, conceptual metaphor theory, functional syntax, blending theory
Resumo:
In this thesis the current status and some open problems of noncommutative quantum field theory are reviewed. The introduction aims to put these theories in their proper context as a part of the larger program to model the properties of quantized space-time. Throughout the thesis, special focus is put on the role of noncommutative time and how its nonlocal nature presents us with problems. Applications in scalar field theories as well as in gauge field theories are presented. The infinite nonlocality of space-time introduced by the noncommutative coordinate operators leads to interesting structure and new physics. High energy and low energy scales are mixed, causality and unitarity are threatened and in gauge theory the tools for model building are drastically reduced. As a case study in noncommutative gauge theory, the Dirac quantization condition of magnetic monopoles is examined with the conclusion that, at least in perturbation theory, it cannot be fulfilled in noncommutative space.
Resumo:
The calculation of First Passage Time (moreover, even its probability density in time) has so far been generally viewed as an ill-posed problem in the domain of quantum mechanics. The reasons can be summarily seen in the fact that the quantum probabilities in general do not satisfy the Kolmogorov sum rule: the probabilities for entering and non-entering of Feynman paths into a given region of space-time do not in general add up to unity, much owing to the interference of alternative paths. In the present work, it is pointed out that a special case exists (within quantum framework), in which, by design, there exists one and only one available path (i.e., door-way) to mediate the (first) passage -no alternative path to interfere with. Further, it is identified that a popular family of quantum systems - namely the 1d tight binding Hamiltonian systems - falls under this special category. For these model quantum systems, the first passage time distributions are obtained analytically by suitably applying a method originally devised for classical (stochastic) mechanics (by Schroedinger in 1915). This result is interesting especially given the fact that the tight binding models are extensively used in describing everyday phenomena in condense matter physics.
Resumo:
The Taylor series expansion method is used to analytically calculate the Eulerian and Lagrangian time correlations in turbulent shear flows. The short-time behaviors of those correlation functions can be obtained from the series expansions. Especially, the propagation velocity and sweeping velocity in the elliptic model of space-time correlation are analytically calculated and further simplified using the sweeping hypothesis and straining hypothesis. These two characteristic velocities mainly determine the space-time correlations.
Resumo:
Describing visually space-time properties of geological phenomena consists of one of the most important parts in geology research. Such visual images are of usually helpful for analyzing geological phenomena and for discovering the regulations behind geological phenomena. This report studies mainly three application problems of scientific visualization in geology: (Dvisualizing geological body A new geometric modeling technique with trimmed surface patches has been eveloped to visualize geological body. Constructional surfaces are represented as trimmed surfaces and a constructional solid is represented by the upper and lower surface composed of trimmed surface patches from constructional surfaces. The technique can completely and definitely represent the structure of geological body. It has been applied in visualization for the coal deposit in Huolinhe, the aquifer thermal energy storage in Tianjin and the structure of meteorite impact in Cangshan et al. (2)visualizing geological space field Efficient visualization methods have been discussed. Marching-Cube algorithm used has been improved and is used to extract iso~surface from 3D data set, iso-line from 2D data set and iso-point from ID data set. The improved method has been used to visualize distribution and evolution of the abnormal pressures in Zhungaer Basin. (3)visualizing porous space a novel way was proposed to define distance from any point to a convex set. Thus a convex set skeleton-based implicit surface modeling technique is developed and used to construct a simplified porous space model. A Buoyancy Percolation numerical simulation platform has been developed to simulate the process of migration of oil in the porous media saturated with water.
Resumo:
This paper explores the relationships between a computation theory of temporal representation (as developed by James Allen) and a formal linguistic theory of tense (as developed by Norbert Hornstein) and aspect. It aims to provide explicit answers to four fundamental questions: (1) what is the computational justification for the primitive of a linguistic theory; (2) what is the computational explanation of the formal grammatical constraints; (3) what are the processing constraints imposed on the learnability and markedness of these theoretical constructs; and (4) what are the constraints that a linguistic theory imposes on representations. We show that one can effectively exploit the interface between the language faculty and the cognitive faculties by using linguistic constraints to determine restrictions on the cognitive representation and vice versa. Three main results are obtained: (1) We derive an explanation of an observed grammatical constraint on tense?? Linear Order Constraint??m the information monotonicity property of the constraint propagation algorithm of Allen's temporal system: (2) We formulate a principle of markedness for the basic tense structures based on the computational efficiency of the temporal representations; and (3) We show Allen's interval-based temporal system is not arbitrary, but it can be used to explain independently motivated linguistic constraints on tense and aspect interpretations. We also claim that the methodology of research developed in this study??oss-level" investigation of independently motivated formal grammatical theory and computational models??a powerful paradigm with which to attack representational problems in basic cognitive domains, e.g., space, time, causality, etc.
Resumo:
Personal communication devices are increasingly equipped with sensors that are able to collect and locally store information from their environs. The mobility of users carrying such devices, and hence the mobility of sensor readings in space and time, opens new horizons for interesting applications. In particular, we envision a system in which the collective sensing, storage and communication resources, and mobility of these devices could be leveraged to query the state of (possibly remote) neighborhoods. Such queries would have spatio-temporal constraints which must be met for the query answers to be useful. Using a simplified mobility model, we analytically quantify the benefits from cooperation (in terms of the system's ability to satisfy spatio-temporal constraints), which we show to go beyond simple space-time tradeoffs. In managing the limited storage resources of such cooperative systems, the goal should be to minimize the number of unsatisfiable spatio-temporal constraints. We show that Data Centric Storage (DCS), or "directed placement", is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, "amorphous placement", in which sensory samples are cached locally, and shuffling of cached samples is used to diffuse the sensory data throughout the whole network. We evaluate conditions under which directed versus amorphous placement strategies would be more efficient. These results lead us to propose a hybrid placement strategy, in which the spatio-temporal constraints associated with a sensory data type determine the most appropriate placement strategy for that data type. We perform an extensive simulation study to evaluate the performance of directed, amorphous, and hybrid placement protocols when applied to queries that are subject to timing constraints. Our results show that, directed placement is better for queries with moderately tight deadlines, whereas amorphous placement is better for queries with looser deadlines, and that under most operational conditions, the hybrid technique gives the best compromise.
Resumo:
L’action humaine dans une séquence vidéo peut être considérée comme un volume spatio- temporel induit par la concaténation de silhouettes dans le temps. Nous présentons une approche spatio-temporelle pour la reconnaissance d’actions humaines qui exploite des caractéristiques globales générées par la technique de réduction de dimensionnalité MDS et un découpage en sous-blocs afin de modéliser la dynamique des actions. L’objectif est de fournir une méthode à la fois simple, peu dispendieuse et robuste permettant la reconnaissance d’actions simples. Le procédé est rapide, ne nécessite aucun alignement de vidéo, et est applicable à de nombreux scénarios. En outre, nous démontrons la robustesse de notre méthode face aux occultations partielles, aux déformations de formes, aux changements d’échelle et d’angles de vue, aux irrégularités dans l’exécution d’une action, et à une faible résolution.