998 resultados para SiO2 films
Resumo:
Ferroelectric SrBi2Nb2O9 (SBN) thin films were prepared by the polymeric precursors method and deposited by spin coating onto Pt/Ti/SiO2/Si substrate and crystallized using a domestic microwave oven. It was studied the influence of the heat flux direction and the duration of the thermal treatment on the films crystallization. An element with high dielectric loss, a SiC susceptor, was used to absorb the microwave energy and transfers the heat to the film. Influence of the susceptor position to the sample crystallization was verified, the susceptor was, placed or below the substrate or above the film. The SBN perovskite phase was observed after a thermal treatment at 700 degreesC for 10 min when the susceptor was placed below the substrate and for 30 min when the susceptor was placed above the film. Electrical measurements revealed that the film crystallized at 700 degreesC for 10 min, with the susceptor placed below the film, presented dielectric constant, dielectric loss, remanent polarization and coercive field of, 67, 0.011, 4.2 muC/cm(2) and 27.5 kV/cm, respectively. When the films were crystallized at 700 degreesC for 30 min, with the susceptor placed above the film, the dielectric constant was 115 and the dissipation factor was around of 0.033, remanent polarization and coercive field were 10.8 muC/cm(2) and 170 kV/cm, respectively. (C) 2003 Elsevier B.V. All rights reserved.
SrBi2Ta2O9 ferroelectric thick films prepared by electrophoretic deposition using aqueous suspension
Resumo:
SrBi2Ta2O9 ferroelectric thick films were prepared by electrophoretic deposition (EPD). For that, ceramic powders were prepared by chemical method in order to obtain compounds with chemical homogeneity. The polymeric precursor method was used for the synthesis of the SrBi2Ta2O9 powder. The crystallographic structure of the powder was examined by X-ray diffraction, and the surface area was determined by single point BET adsorption. The 0.03 vol.% suspension was formed by dispersing the powder in water using two different polymers as dispersants: an ester polyphosphate (C213) and an ammonium polyacrilate (Darvan 821-A). It was investigated the influence of the different dispersants in the surface properties of the powder by zeta potential measurements. The films were deposited on platinum-coated alumina and Pt/Ti/SiO2/Si substrates by a 4 mA constant current, for 10 min, using two parallel electrodes placed at a separation distance of 3 min in the suspension. Several cycles of deposition-drying of the deposit were carried out until reaching the desired thickness. After thermal treatment at temperatures ranging from 700 to 1000 degreesC, the films were characterized by X-ray diffraction and scanning electron microscopy for the microstructure observation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Lanthanum-modified bismuth titanate, Bi4-xLaxTi3O12 (BLT), thin films with a La concentration of 0.75 was grown on Pt/Ti/SiO2/Si substrates by using the polymeric precursor solution and spin-coating method. The scanning electron microscopy (SEM) showed rounded grains, which is not typical for these system. The BLT films showed well-saturated polarization-electric field curve which 2P(r) = 41.4 muC/cm(2) and V-c = 0.99 V. The capacitance dependence on the voltage is strongly nonlinear, confirming the ferroelectric properties of the film resulting from the domains switching. These properties make BLT a promising material for FERAM applications.
Resumo:
Stoichiometric Ba1-xSrxTiO3 (BST; x = 0.4) thin films were prepared by the polymeric precursor method. High quality polycrystalline films of BST with low roughness (approximate to 3 nm) were obtained from a Pt/Ti/SiO2/Si substrate deposited by spin-coating technique. Microstructure and morphological evaluation were done using grazing incident X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Grazing incident angle XRD characterization of these films showed that BST phase crystallizes at 600 degrees C from an inorganic amorphous matrix. No intermediate crystalline phase was identified. A linear relationship between roughness and grain size was observed. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Zinc oxide (ZnO) is an electroluminescent (EL) material that can emit light in different regions of electromagnetic spectrum when electrically excited. Since ZnO is chemically stable, inexpensive and environmentally friendly material, its EL property can be useful to construct solid-state lamps for illumination or as UV emitter. We present here two wet chemical methods to prepare ZnO thin-films: the Pechini method and the sol-gel method, with both methods resulting in crystalline and transparent films with transmittance > 85% at 550 nm. These films were used to make thin-film electroluminescent devices (TFELD) using two different insulator layers: lithium fluoride (LiF) or silica (SiO2). All the devices exhibit at least two wide emission bands in the visible range centered at 420 nm and at 380 nm attributed to the electronic defects in the ZnO optical band gap. Besides these two bands, the device using SiO2 and ZnO film obtained via sol-gel exhibits an additional band in the UV range centered at 350 nm which can be attributed to excitonic emission. These emission bands of ZnO can transfer their energy when a proper dopant is present. For the devices produced the voltage-current characteristics were measured in a specific range of applied voltage. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Lanthanum-modified bismuth titanate, Bi4-xLaxTi3O12 (BLT), thin films with a La concentration ranging from 0 to 0.75 were grown on Pt/Ti/SiO2/Si substrates using a polymeric precursor solution and spin-coating method. The scanning electron microscopy shows a change of morphology with increasing the lanthanum concentration. The BLT films show well-saturated polarization-electric field curves whit remnant polarizations of 14.7, 20.5, 21.5, and 20.4 muC/cm(2) for x = 0, 0.25, 0.50 and 0.75, respectively. The dielectric constant of BLT (x = 0.75 mol% La) is equal to 158 while dielectric loss remain low (tandelta = 0.0018).
Resumo:
PbZr0.3Ti0.7O3 (PZT) films were produced by polymeric precursor route and deposited by spin-coater technique on Pt(111)/Ti/SiO2/Si(100) substrates. The films were heat-treated using different furnaces: (a) a conventional furnace, at 700 degrees C; and (b) a domestic microwave oven, at 600 degrees C. The X-ray patterns revealed that both films are single phase and reflections were identified as belongs to the PZT phase. The intensity of these reflections showed a (111), (001) and (100) preferred orientation. Morphological and electrical characterizations showed that all samples present a rather different microstructure and both with high spontaneous polarization.
Resumo:
Bismuth titanate (Bi4Ti3O12-BIT) films were evaluated for use as lead-free piezoelectric thin-films in micro-electromechanical systems. The films were grown by the polymeric precursor method on Pt/Ti/SiO2/Si (1 0 0) (Pt) bottom electrodes at 700 degrees C for 2 h in static air and oxygen atmospheres. The domain structure was investigated by piezoresponse force microscopy (PFM). Annealing in static air leads to better ferroelectric properties, higher remanent polarization, lower drive voltages and higher piezoelectric coefficient. on the other hand, oxygen atmosphere favors the imprint phenomenon and reduces the piezoelectric coefficient dramatically. Impedance data, represented by means of Nyquist diagrams, show a dramatic increase in the resistivity for the films annealed in static air atmopshere. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Ferroelectric Bi3.25La0.75Ti3O12 (BLT) thin films were deposited on Pt/Ti/SiO2/Si substrates by the polymeric precursor method. The films present c-axis preferred orientation after annealing at 700 degrees C for 2 h in conventional furnace. All the capacitors showed good polarization fatigue characteristics at least up to 1x10(10) bipolar pulse cycles and excellent retention properties up to 1x10(4) s. We found that the polarization loss is insignificant with five write/read voltages at a waiting time of 10 000 S. Independently of the applied electric field the retained switchable polarization approached a nearly steady-state value after a retention time of 10 s. (C) 2005 American Institute of Physics.
Resumo:
Thin films of barium and strontium titanate (BST), synthesized by the polymeric precursor solution and spin coated on [Pt (140nm)/Ti (10 nM)/SiO2(1000 nm)/Si] substrates were found to be photoluminescent at room temperature when heat treated below 973 K, i.e. before their crystallization. First principles quantum mechanical techniques, based on density functional theory (DFT) were employed to study the electronic structure of two periodic models: one is standing for the crystalline BST thin film and the other one for the structurally disordered thin film. The aim is to compare the photoluminescence (PL) spectra of the crystalline and disordered thin films with their UV-vis spectra and with their computed electronic structures. The calculations show that new localized states are created inside the band gap of the crystalline model, as predicted by the UV-vis spectra. The study of the charge repartition in the structure before and after deformation of the periodic model shows that a charge gradient appears among the titanate clusters. This charge gradient, together with the new localized levels, gives favorable conditions for the trapping of holes and electrons in the structure, and thus to a radiative recombination process. Our models are not only consistent with the experimental data, they also allow to explain the relations between structural disorder and photoluminescence at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
a-b axis-oriented, lanthanum doped Bi4Ti3O12 (BLT) thin films with a TiO2 rutile buffer layer deposited on Pt/Ti/SiO2/Si substrates were grown by the soft chemical method. Butterfly dielectric behavior has been achieved and can be ascribed to the ferroelectric domain switching. The remanent polarization and the coercive voltage for the film deposited on TiO2 buffer layer were 22.2 mu C/cm(2) and 1.8 V, respectively. Random-oriented BLT films showed a reduction in switching polarization when compared to the a-b axis-oriented films. Due to the excellent physical properties, these films are a promising candidate for use in lead-free applications in ferroelectric devices. (c) 2006 American Institute of Physics.
Resumo:
Ferroelectric PbTiO3 thin films were successfully prepared on a Pt(111)Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. X-ray diffraction patterns of the films indicate that they are polycrystalline in nature. This method allows low temperature (500 degrees C) synthesis and high electrical properties. The multilayer PbTiO3 thin films were granular in structure with a grain size of approximately 110-120 nm. A 380-nm-thick film was obtained by carrying out four cycles of the spin-coating/heating process. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed the surface of these thin films to be smooth, dense and crack-free with low surface roughness (=3.4 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 570 and 0.016. The C-V characteristics of perovskite thin film prepared at low temperature show normal ferrolectric behavior. The remanent polarization and coercive field for the films deposited were 13.62 mu C/cm(2) and 121.43 kV/cm, respectively. The high electrical property values are attributed to the excellent microstrutural quality and chemical homogeneity of thin films obtained by the polymeric precursor method. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
BiFeO3 (BFO) thin films were fabricated on Pt(111)/Ti/SiO2/Si substrates by using a polymeric precursor solution under appropriate crystallization conditions. The capacitance dependence on voltage is strongly nonlinear, confirming the ferroelectric properties of the films resulting from the domain switching. The leakage current density increases with annealing temperature. The polarization electric field curves could be obtained in BFO films annealed at 500 degrees C, free of secondary phases. X-ray photoelectron spectroscopy spectra of films annealed at 500 degrees C indicated that the oxidation state of Fe was purely 3+, demonstrating that our films possess stable chemical configurations. (c) 2007 American Institute of Physics.
Resumo:
Strontium-modified lead titanate (PST) thin films with composition Pb1-xSrxTiO3 (0.10 < x &LE; 0.60) were grown on Pt/Ti/SiO2/Si substrates using a soft chemical process. The crystallization of the PST thin films was achieved by heat treatment at 600&DEG;C. The structural and microstructural modifications in the films were studied using X-ray diffraction (XRD) and atomic force microscopy, respectively. The XRD study shows that the lattice parameters of polycrystalline PST thin films calculated from X-ray data indicate a decrease in lattice tetragonality with the increase in strontium content in these films. This indicates a gradual change from tetragonal to cubic structure. By atomic force microscopy analysis, the average grain size of the thin films was systematically reduced with the increase in Sr content. The dielectric property of the thin films was found to be strongly dependent on the Sr concentration. With 60 at.% Sr content, a ferroelectric to paraelectric phase transition was observed at room temperature.
Resumo:
SrBi2Ta2O9 ferroelectric thick films were prepared by electrophoretic deposition (EPD). For that, ceramic powders were prepared by chemical method in order to obtain compounds with chemical homogeneity. The polymeric precursor method was used for the synthesis of the SrBi2Ta2O9 powder. The crystallographic structure of the powder was examined by X-ray diffraction, and the surface area was determined by single point BET adsorption. The 0.03 vol% suspension was formed by dispersing the powder in water using two different polymers as dispersants: an ester polyphosphate (C213) and an ammonium polyacrilate (Darvan 821-A). The influence of the different dispersants on the powder surface properties were investigated by zeta potential measurements. The films were deposited on platinum-coated alumina and Pt/Ti/SiO2/Si substrates by electrophoretic deposition using a 4 mA constant current, for 10 min, with two parallel electrodes placed at a separation distance of 3 min in the suspension. Several cycles of deposition-drying of the deposit was carried out until the desired thickness was obtained. After thermal treatment at temperatures ranging from 700 to 1000degreesC, the films were characterized by X-ray diffraction and scanning electron microscopy.