950 resultados para Reptiles and amphibians
Resumo:
"The English edition of this work appeared under the title of 'Buffon's Natural history, &c.'"
Resumo:
Polychlorinated biphenyls (PCBs) and substituted phenylamine antioxidants (SPAs) are two chemical groups that have been used in multiple Canadian industrial processes. Despite the production ban of PCBs in North America in 1977, they are still ubiquitous in the environment and in wildlife tissues. Previous studies of fish, amphibians, birds, and mammals have shown that PCBs are toxic and act as endocrine disruptors. In contrast, SPAs, specifically N-phenyl-1-naphthylamine (PANA), have received very little attention despite their current use in Canada and their expected environmental releases. The effects of PCB and PANA exposures in reptiles remain unknown thus, juvenile Chelydra serpentina were used in this thesis as a model vertebrate to fill in missing toxicity research gaps due to their importance as an environmental indicator. First, food pellets were spiked at an environmentally relevant concentration of the PCB mixture Aroclor 1254 (A1254) to model hepatic bioaccumulation (0.45 μg/g A1254 for 31 days) and depuration (clean food for 50 days) of PCBs in turtles. No significant differences in PCB concentrations were observed between the control and treated animals, suggesting that juvenile turtles exposed to environmentally relevant concentrations of PCBs can likely detoxify low concentrations of PCBs. Additionally, two dose-response experiments were performed using A1254 or PANA spiked food (0-12.7 μg/g and 0-3,446 μg/g, respectively) to determine hepatic toxicity and bioaccumulation in juvenile C. serpentina. An increase in hepatic cyp1a was observed when exposed to the highest dose of both chemicals: 1) for A1254, induction correlated to the significant increase in hepatic PCB congeners that are known to be metabolized by CYP1A; and 2) for PANA, induction suggested that CYP1A has a potential role in its detoxification. PCBs are known endocrine disruptors, but no significant changes were observed for both thyroid receptors (alpha and beta) or by estrogen and androgen receptors. This lack of response, also noted in the PANA exposure, suggests that C. serpentina is less sensitive to endocrine disruption than other vertebrates. Furthermore, the expression of genes involved in cellular stress was not altered in PCB and PANA exposed animals, supporting the resilience of turtles to oxidative stress. This is the first study to demonstrate the toxicity of PCBs and PANA in C. serpentina, demonstrating the turtle’s high tolerance to contamination.
Resumo:
This paper examines empirically the relative influence of the degree of endangerment of wildlife species and their stated likeability on individuals' allocation of funds for their conservation. To do this, it utilises data obtained from the IUCN Red List, and likeability and fund allocation data obtained from two serial surveys of a sample of the Australian public who were requested to assess 24 Australian wildlife species from three animal classes: mammals, birds and reptiles. Between the first and second survey, respondents were provided with extra information about the focal species. This information resulted in the dominance of endangerment as the major influence on the allocation of funding of respondents for the conservation of the focal wildlife species. Our results throw doubts on the proposition in the literature that the likeability of species is the dominant influence on willingness to pay for conservation of wildlife species. Furthermore, because the public's allocation of fund for conserving wildlife species seems to be more sensitive to information about the conservation status of species than to factors influencing their likeability, greater attention to providing accurate information about the former than the latter seems justified. Keywords: Conservation of wildlife species; Contingent valuation; Endangerment of species; Likeability of species; Willingness to pay
Resumo:
Zoonotic infections are a growing threat to global health. Chlamydia pneumoniae is a major human pathogen that is widespread in human populations, causing acute respiratory disease, and has been associated with chronic disease. C. pneumoniae was first identified solely in human populations; however, its host range now includes other mammals, marsupials, amphibians, and reptiles. Australian koalas (Phascolarctos cinereus) are widely infected with two species of Chlamydia, C. pecorum and C. pneumoniae. Transmission of C. pneumoniae between animals and humans has not been reported; however, two other chlamydial species, C. psittaci and C. abortus, are known zoonotic pathogens. We have sequenced the 1,241,024-bp chromosome and a 7.5-kb cryptic chlamydial plasmid of the koala strain of C. pneumoniae (LPCoLN) using the whole-genome shotgun method. Comparative genomic analysis, including pseudogene and single-nucleotide polymorphism (SNP) distribution, and phylogenetic analysis of conserved genes and SNPs against the human isolates of C. pneumoniae show that the LPCoLN isolate is basal to human isolates. Thus, we propose based on compelling genomic and phylogenetic evidence that humans were originally infected zoonotically by an animal isolate(s) of C. pneumoniae which adapted to humans primarily through the processes of gene decay and plasmid loss, to the point where the animal reservoir is no longer required for transmission.
Resumo:
Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of diseases. Since the first isolation of C. pneumoniae TWAR in 1965, all human isolates have been essentially clonal, providing little evolutionary insight. To address this gap, we investigated the genetic diversity of 30 isolates from diverse geographical locations, from both human and animal origin (amphibian, reptilian, equine and marsupial). Based on the level of variation that we observed at 23 discreet gene loci, it was clearly evident that the animal isolates were more diverse than the isolates of human origin. Furthermore, we show that C. pneumoniae isolates could be grouped into five major genotypes, A-E, with A, B, D and E genotypes linked by geographical location, whereas genotype C was found across multiple continents. Our evidence strongly supports two separate animal-to-human cross species transfer events in the evolutionary history of this pathogen. The C. pneumoniae human genotype identified in the USA, Canada, Taiwan, Iran, Japan, Korea and Australia (non- Indigenous) most likely originated from a single amphibian or reptilian lineage, which appears to have been previously geographically widespread. We identified a separate human lineage present in two Australian Indigenous isolates (independent geographical locations). This lineage is distinct and is present in Australian amphibians as well as a range of Australian marsupials.
Resumo:
Complex surveillance problems are common in biosecurity, such as prioritizing detection among multiple invasive species, specifying risk over a heterogeneous landscape, combining multiple sources of surveillance data, designing for specified power to detect, resource management, and collateral effects on the environment. Moreover, when designing for multiple target species, inherent biological differences among species result in different ecological models underpinning the individual surveillance systems for each. Species are likely to have different habitat requirements, different introduction mechanisms and locations, require different methods of detection, have different levels of detectability, and vary in rates of movement and spread. Often there is a further challenge of a lack of knowledge, literature, or data, for any number of the above problems. Even so, governments and industry need to proceed with surveillance programs which aim to detect incursions in order to meet environmental, social and political requirements. We present an approach taken to meet these challenges in one comprehensive and statistically powerful surveillance design for non-indigenous terrestrial vertebrates on Barrow Island, a high conservation nature reserve off the Western Australian coast. Here, the possibility of incursions is increased due to construction and expanding industry on the island. The design, which includes mammals, amphibians and reptiles, provides a complete surveillance program for most potential terrestrial vertebrate invaders. Individual surveillance systems were developed for various potential invaders, and then integrated into an overall surveillance system which meets the above challenges using a statistical model and expert elicitation. We discuss the ecological basis for the design, the flexibility of the surveillance scheme, how it meets the above challenges, design limitations, and how it can be updated as data are collected as a basis for adaptive management.
Resumo:
Assisted Reproductive Technologies (ART) offer a wide range of techniques that have the potential to augment efforts to conserve and manage endangered amphibians and improve wild and captive population numbers. Gametes and tissues of species nearing endangered or extinct status can be cryopreserved and stored in gene banks, to provide material that can be utilised in the future as ART methods are refined. The Spotted Grass Frog, Limnodynastes tasmaniensis, is an abundant amphibian species in South-Eastern Australia of the family Myobatrachidae, that is suitable for the development of ART systems that can be applied to the threatened and endangered myobatrachid and other amphibian species native to Australia. The aim of this study was to advance the understanding of ovulation, fertilisation and embryo nic development of Lim. tasmaniensis and in vitro manipulations of reproduction and development for use in the development of advanced ART procedures such as intracytoplasmic spermatozoon injection (ICSI), androgenesis and nuclear transfer. Ovulation in amphibians can be induced by protocols utilising natural or synthetic hormones. All protocols tested on Lim. tasmaniensis in this study required two injections and the most effective protocols continued to require a first injection of pituitary extracts to induce ovulation. The second injection was, however, successfully replaced by synthetic chorionic gonadotrophin at a threshold dosage of 100 iu and halved the number of cane toads required to source the pituitaries. A combination of LHRH and Pimozide offered a less effective protocol, that did not require the use of pituitary extracts, and avoided the risk of pathogen transfer associated with unsterilised pituitary extracts. Unfertilised eggs of Lim. tasmaniensis were exposed to media of various osmolalities to determine media effects on eggs and their surrounding jelly layers that might impact on egg viability and fertilisability. Osmolality had no effect upon the egg diameter, however, rapid swelling of the jelly layers occurred within 15 minutes of exposure to various media treatments and plateaued from 30-90 minutes without further expansion. Swelling of the jelly layers was increased in hypotonic media (2.5% SAR, H2O) and minimised in the isotonic media (100% SAR). The optimal conditions for the culture of Lim. tasmaniensis eggs were identified as a holding media of 100% SAR, followed by a medium change to 2.5% SAR at insemination. This sequence of media minimised the rate of swelling of the jelly layers prior to contact with the spermatozoa, and maximised the activation of spermatozoa and eggs throughout fertilisation and embryonic development. Embryos of Lim. tasmaniensis were cultured at four temperatures (13 C, 17 C, 23 C and 29 C), to determine the effect of temperature on cleavage and embryonic development rates. Embryonic development progressed through a sequence of stages that were not altered by changes in temperature. However cleavage rates were affected by changes in temperature as compared with normal embryonic growth at 23 C. Embryonic development was suspended at the lowest temperature (13 C) while embryonic viability was maintained. A moderate decrease in temperature (17 C) slowed cleavage, while the highest temperature (29 C) increased the cleavage rate, but decreased the embryo survival. Rates of embryonic development can be manipulated by changes in temperature and this method can be used to source blastomeres of a specific size/stage at a predetermined age or halt cleavage at specific stages for embryos or embryo derived cells to be included in ART procedures. This study produced the first report of the application of Intracytoplasmic Spermatozoon Injection (ICSI) in an Australian amphibian. Eggs that were activated by microinjection with a single spermatozoon (n=50) formed more deep, but abnormal, cleavage furrows post-injection (18/50, 36%), than surface changes (12/50, 24%). This result is in contrast to eggs injected without a spermatozoon (n=42), where the majority of eggs displayed limited surface changes (36/42, 86%), and few deep, abnormal furrows (3/42, 7%). Three advanced embryos (3/50, 6%) were produced by ICSI that developed to various stages within the culture system. Technical difficulties were encountered that prevented the generation of any metamorphs from ICSI tadpoles. Nevertheless, when these blocks to ICSI are overcome, the ICSI procedure will be both directly useful as an ART procedure in its own right, and the associated refinement of micromanipulation procedures will assist in the development of other ART procedures in Lim. tasmaniensis. A greater understanding of basic reproductive and developmental biology in Lim. tasmaniensis would greatly facilitate refinement of fertilisation by ICSI. Assisted Reproductive Technologies, in conjunction with gene banks may in the future regenerate extinct amphibian species, and assist in the recovery of declining amphibian populations nationally and worldwide.
Resumo:
Parametric and generative modelling methods are ways in which computer models are made more flexible, and of formalising domain-specific knowledge. At present, no open standard exists for the interchange of parametric and generative information. The Industry Foundation Classes (IFC) which are an open standard for interoperability in building information models is presented as the base for an open standard in parametric modelling. The advantage of allowing parametric and generative representations are that the early design process can allow for more iteration and changes can be implemented quicker than with traditional models. This paper begins with a formal definition of what constitutes to be parametric and generative modelling methods and then proceeds to describe an open standard in which the interchange of components could be implemented. As an illustrative example of generative design, Frazer’s ‘Reptiles’ project from 1968 is reinterpreted.
Resumo:
Nowadays, the emergence of resistance to the current available chemotherapeutic drugs by cancer cells makes the development of new agents imperative. The skin secretion of amphibians is a natural rich source of antimicrobial peptides (AMP), and researchers have shown that some of these wide spectrum molecules are also toxic to cancer cells. The aim of this study was to verify a putative anticancer activity of the AMP pentadactylin isolated for the first time from the skin secretion of the frog Leptodactylus labyrinthicus and also to study its cytotoxic mechanism to the murine melanoma cell line B16F10. The results have shown that pentadactylin reduces the cell viability of B16F10 cells in a dose-dependent manner. It was also cytotoxic to normal human fibroblast cells; nevertheless, pentadactylin was more potent in the first case. The studies of action mechanism revealed that pentadactylin causes cell morphology alterations (e.g., round shape and shrinkage morphology), membrane disruption, DNA fragmentation, cell cycle arrest at the S phase, and alteration of mitochondrial membrane potential, suggesting that B16F10 cells die by apoptosis. The exact mechanism that causes reduction of cell viability and cytotoxicity after treatment with pentadactylin is still unknown. In conclusion, as cancer cells become resilient to death, it is worthwhile the discovery of new drugs such as pentadactylin that induces apoptosis.
Resumo:
The Great Sandy Region (incorporating Fraser Island and the Cooloola sand-mass), south-east Queensland, contains a significant area of Ramsar-listed coastal wetlands, including the globally important patterned fen complexes. These mires form an elaborate network of pools surrounded by vegetated peat ridges and are the only known subtropical, Southern Hemisphere examples, with wetlands of this type typically located in high northern latitudes. Sedimentological, palynological and charcoal analysis from the Wathumba and Moon Point complexes on Fraser Island indicate two periods of swamp formation (that may contain patterned fens), one commencing at 12 000 years ago (Moon Point) and the other ~4300 years ago (Wathumba). Wetland formation and development is thought to be related to a combination of biological and hydrological processes with the dominant peat-forming rush, Empodisma minus, being an important component of both patterned and non-patterned mires within the region. In contrast to Northern Hemisphere paludifying systems, the patterning appears to initiate at the start of wetland development or as part of an infilling process. The wetlands dominated by E. minus are highly resilient to disturbance, particularly burning and sea level alterations, and appear to form important refuge areas for amphibians, fish and birds (both non-migratory and migratory) over thousands of years.
Resumo:
Chytridiomycosis is an emerging infectious disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis, and its role in causing population declines and species extinctions worldwide has created an urgent need for methods to detect it. Several reports indicate that in anurans chytridiomycosis can cause the depigmentation of tadpole tnouthparts, but the accuracy of using depigmentation to determine disease status remains uncertain. Our objective was to determine for the Mountain Yellow-legged Frog (Rana muscosa) whether visual inspections of the extent of tadpole mouthpart depigmentation could be used to accurately categorize individual tadpoles or R. muscosa populations as B. dendrobatidis-positive or negative. This was accomplished by assessing the degree of mouthpart depigmentation in tadpoles of known disease status (based on PCR assays). The depigmentation of R. muscosa tadpole mouthparts was associated with the presence of B. dendrobatidis, and this association was particularly strong for upper jaw sheaths. Using a rule that classifies tadpoles with upper jaw sheaths that are 100% pigmented as uninfected and those with jaw sheaths that are <100% pigmented as infected resulted in the infection status of 86% of the tadpoles being correctly classified. By applying this rule to jaw sheath pigmentation scores averaged across all tadpoles inspected per site, we were able to correctly categorize the infection status of 92% of the study populations. Similar research on additional anurans is critically needed to determine how broadly applicable our results for R. muscosa are to other species.
Resumo:
Background: Salmonella enterica serotype Virchow is the most common cause of invasive nontyphoid salmonellosis in North Queensland, particularly in infants, but the zoonotic source is unknown. This study aimed at determining (i) the prevalence of the introduced Asian house gecko, Hemidactylus frenatus, in houses in North Queensland and (ii) whether they were a potential source of Salmonella Virchow. Methods: Asian house geckos were collected in a random survey of houses in Townsville, North Queensland. Gut contents underwent microbiological analysis within 2 h of removal using both direct plating and enrichment broth methods. Any organism found to be a presumptive Salmonella spp. was then sent to a reference lab for confirmation of genus/species, serotyping, and phage typing if indicated. Results: One hundred Asian house geckos were collected from 57 houses. Geckos were present in 100% of houses surveyed, and prevalence of Salmonella in large intestinal contents was 7% (95% confidence interval 2, 12%). Three serotypes were found: Virchow (phage type 8), Weltevreden, and an untypable subspecies 1 serotype 11:-:1,7. Conclusion: Since Salmonella Virchow (phage type 8) is associated with invasive disease, the introduced Asian house gecko may play a significant role in the epidemiology of sporadic salmonellosis in places invaded by these peridomestic reptiles. These results justify more detailed epidemiological studies on the role of the Asian house gecko in sporadic salmonellosis and development of evidence-based strategies to decrease this potential zoonotic hazard.
Resumo:
Grazing by domestic livestock is one of the most widespread uses of the rangelands of Australia. There is limited information on the effects of grazing by domestic livestock on the vertebrate fauna of Australia and the establishment of a long-term grazing experiment in north-eastern Queensland at Wambiana provided an opportunity to attempt an examination of the changes in vertebrate fauna as a consequence of the manipulation of stocking rates. The aim was to identify what the relative effects of vegetation type, stocking rate and other landscape-scale environmental factors were on the patterns recorded. Sixteen 1-ha sites were established within three replicated treatments (moderate, heavy and variable stocking rates). The sites were sampled in the wet and dry seasons in 1999-2000 (T-0) and again in 2003-04 (T-1). All paddocks of the treatments were burnt in 1999. Average annual rainfall declined markedly between the two sampling periods, which made interpretation of the data difficult. A total of 127 species of vertebrate fauna comprising five amphibian, 83 bird, 27 reptile and 12 mammal species were recorded. There was strong separation in faunal composition from T-0 to T-1 although changes in mean compositional dissimilarity between the grazing stocking rate treatments were less well defined. There was a relative change in abundance of 24 bird, four mammal and five reptile species from T-0 to T-1. The generalised linear modelling identified that, in the T-1 data, there was significant variation in the abundance of 16 species explained by the grazing and vegetation factors. This study demonstrated that vertebrate fauna assemblage did change and that these changes were attributable to the interplay between the stocking rates, the vegetation types on the sites surveyed, the burning of the experimental paddocks and the decrease in rainfall over the course of the two surveys. It is recommended that the experiment is sampled again but that the focus should be on a rapid survey of abundant taxa (i.e. birds and reptiles) to allow an increase in the frequency of sampling and replication of the data. This would help to articulate more clearly the trajectory of vertebrate change due to the relative effects of stocking rates compared with wider landscape environmental changes. Given the increasing focus on pastoral development in northern Australia, any opportunity to incorporate the collection of data on biodiversity into grazing manipulation experiments should be taken for the assessment of the effects of land management on faunal species.
Resumo:
In most non-mammalian vertebrates, such as fish and reptiles, teeth are replaced continuously. However, tooth replacement in most mammals, including human, takes place only once and further renewal is apparently inhibited. It is not known how tooth replacement is genetically regulated, and little is known on the physiological mechanism and evolutionary reduction of tooth replacement in mammals. In this study I have attempted to address these questions. In a rare human condition cleidocranial dysplasia, caused by a mutation in a Runt domain transcription factor Runx2, tooth replacement is continued. Runx2 mutant mice were used to investigate the molecular mechanisms of Runx2 function. Microarray analysis from dissected embryonic day 14 Runx2 mutant and wild type dental mesenchymes revealed many downstream targets of Runx2, which were validated using in situ hybridization and tissue culture methods. Wnt signaling inhibitor Dkk1 was identified as a candidate target, and in tissue culture conditions it was shown that Dkk1 is induced by FGF4 and this induction is Runx2 dependent. These experiments demonstrated a connection between Runx2, FGF and Wnt signaling in tooth development and possibly also in tooth replacement. The role of Wnt signaling in tooth replacement was further investigated by using a transgenic mouse model where Wnt signaling mediator β-catenin is continuously stabilized in dental epithelium. This stabilization led to activated Wnt signaling and to the formation of multiple enamel knots. In vitro and transplantation experiments were performed to examine the process of extra tooth formation. We showed that new teeth were continuously generated and that new teeth form from pre-existing teeth. A morphodynamic activator-inhibitor model was used to simulate enamel knot formation. By increasing the intrinsic production rate of the activator (β-catenin), the multiple enamel knot phenotype was reproduced by computer simulations. It was thus concluded that β-catenin acts as an upstream activator of enamel knots, closely linking Wnt signaling to the regulation of tooth renewal. As mice do not normally replace teeth, we used other model animals to investigate the physiological and genetic mechanisms of tooth replacement. Sorex araneus, the common shrew was earlier reported to have non-functional tooth replacement in all antemolar tooth positions. We showed by histological and gene expression studies that there is tooth replacement only in one position, the premolar 4 and that the deciduous tooth is diminished in size and disappears during embryogenesis without becoming functional. The growth rates of deciduous and permanent premolar 4 were measured and it was shown by competence inference that the early initiation of the replacement tooth in relation to the developmental stage of the deciduous tooth led to the inhibition of deciduous tooth morphogenesis. It was concluded that the evolutionary loss of deciduous teeth may involve the early activation of replacement teeth, which in turn suppress their predecessors. Mustela putorius furo, the ferret, has a dentition that resembles that of the human as ferrets have teeth that belong to all four tooth families, and all the antemolar teeth are replaced once. To investigate the replacement mechanism, histological serial sections from different embryonic stages were analyzed. It was noticed that tooth replacement is a process which involves the growth and detachment of the dental lamina from the lingual cervical loop of the deciduous tooth. Detachment of the deciduous tooth leads to a free successional dental lamina, which grows deeper into the mesenchyme, and later buds the replacement tooth. A careful 3D analysis of serial histological sections was performed and it was shown that replacement teeth are initiated from the successional dental lamina and not from the epithelium of the deciduous tooth. The molecular regulation of tooth replacement was studied and it was shown by examination of expression patterns of candidate regulatory genes that BMP/Wnt inhibitor Sostdc1 was strongly expressed in the buccal aspect of the dental lamina, and in the intersection between the detaching deciduous tooth and the successional dental lamina, suggesting a role for Sostdc1 in the process of detachment. Shh was expressed in the enamel knot and in the inner enamel epithelium in both generations of teeth supporting the view that the morphogenesis of both generations of teeth is regulated by similar mechanisms. In summary, histological and molecular studies on different model animals and transgenic mouse models were used to investigate tooth replacement. This thesis work has significantly contributed to the knowledge on the physiological mechanisms and molecular regulation of tooth replacement and its evolutionary suppression in mammals.