916 resultados para NF-KAPPA B AND LIPOPOLYSACCHARIDE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Oral Epithelial Dysplasia (OED) is the lesion that precedes or co-exists with the Oral Squamous Cell Carcinoma (OSCC), presenting molecular and/or histological similar alterations. The divergences about the malignization potential of OEDs and the role of inflammation in this process make hard the early diagnosis and evaluation of OSCCs aggressiveness. Thus, it became the goal of this study to evaluate the role of inflammation in oral carcinogenesis and tumoral aggressiveness. For this purpose a morphological study was performed in 20 OED cases and 40 OSCC cases to detect the malignization potential of OEDs and the histologic malignancy grading (HMG) of OSCCs, analyzing superficial masses for dismorphism evaluation and the invasive front for evaluation of tumoral growing; and immunohistochemical, using anti-CD8, anti-FOXP3, anti-TGFβ, anti-TNFα and anti-NF-кB antibodies, comparing their with the types lesion, histological degree and intensity of the inflammatory infiltrate. The results were statistically significant for the parameters: cell maturity (p=0,0001), masses presence (p=0,038) and dismorphism (p=0,037), when associated to HMG. To compare the expression of the markers with the types lesion, a significantly higher expression of CD8 (p=0,001) and NF-кB (p=0,002) in the OED, and also a smaller expression of the epithelial TGFβ in the severe OEDs (p=0,011), without significant expression between OSCC degrees. By relating the expression of the studied markers with the inflammatory infiltrate intensity, a positive relation was observed with: inflammatory TNFα(p=0,003), epithelial TNFα and NF-кB (p=0,051 and p=0,004), in OEDs; and with CD8 (p=0,021) and TNFα (p=0,015) in conjunctive OSCCs; and a negative relation with epithelial TNFα (p=0,034) in OSCCs. No significant relation was found between FOXP3 with any of the studied variables. These findings lead to the conclusion that, the study of the invasive front is as important as the study of superficial masses for the evaluation of tumoral aggressiveness; the intensity of the inflammatory infiltrate has no use as a parameter for prognostic evaluation of OSCC in routine exams, but, the molecular events detected in this study may be necessary to give basis for determining the malignant potential in OEDs and aggressiveness in OSCCs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled bone turnover is directed by the expression of receptor-activated NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1 beta and TNF-alpha-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activation for maximal expression. Real-time PCR was used to assess the p38 contribution toward IL-1 beta and TNF-alpha-induced RANKL mRNA expression. Steady-state RANKL RNA levels were increased approximately 17-fold by IL-1 beta treatment and subsequently reduced similar to 70%-90% when p38 MAPK was inhibited with SB203580. RANKL mRNA stability data indicated that p38 MAPK did not alter the rate of mRNA decay in IL-1 beta-induced cells. Using a RANKL-luciferase cell line receptor containing a 120-kB segment of the 5' flanking region of the RANKL gene, reporter expression was stimulated 4-5-fold by IL-1 beta or TNF-alpha treatment. IL-1 beta-induced RANKL reporter expression was completely blocked with specific p38 inhibitors as well as dominant negative mutant constructs of MAPK kinase-3 and -6. In addition, blocking p38 signaling in bone marrow stromal cells partially inhibited IL-1 beta and TNF-alpha-induced osteoclastogenesis in vitro. Results from these studies indicate that p38 MAPK is a major signaling pathway involved in IL-1 beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acting in the hypothalamus, tumor necrosis factor-alpha (TNF-alpha) produces a potent anorexigenic effect. However, the molecular mechanisms involved in this phenomenon are poorly characterized. In this study, we investigate the capacity of TNF-alpha to activate signal transduction in the hypothalamus through elements of the pathways employed by the anorexigenic hormones insulin and leptin. High dose TNF-a promotes a reduction of 25% in 12 h food intake, which is an inhibitory effect that is marginally inferior to that produced by insulin and leptin. In addition, high dose TNF-a increases body temperature and respiratory quotient, effects not reproduced by insulin or leptin. TNF-alpha, predominantly at the high dose, is also capable of activating canonical pro-inflammatory signal transduction in the hypothalamus, inducing JNK, p38, and NF kappa B, which results in the transcription of early responsive genes and expression of proteins of the SOCS family. Also, TNF-a activates signal transduction through JAK-2 and STAT-3, but does not activate signal transduction. through early and intermediary elements of the insulin/leptin signaling pathways such as IRS-2, Akt, ERK and FOXO1. When co-injected with insulin or leptin, TNF-a, at both high and low doses, partially impairs signal transduction through IRS-2, Akt, ERK and FOXO1 but not through JAK-2 and STAT-3. This effect is accompanied by the partial inhibition of the anorexigenic effects of insulin and leptin, when the low, but not the high dose of TNF-alpha is employed. In conclusion, TNF-alpha, on a dose-dependent way, modulates insulin and leptin signaling and action in the hypothalamus. (c) Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-1 (IL-1) may be a mediator of β-cell damage in insulin-dependent diabetes mellitus (IDDM). The IL-1 mechanism of action on insulin-producing cells probably includes activation of the transcription nuclear factor κB (NF-κB), increased transcription of the inducible form of nitric oxide synthase (iNOS) and the subsequent production of nitric oxide (NO). Reactive oxygen intermediates, particularly H2O2, have been proposed as second messengers for NF-κB activation. In the present study, we tested whether ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), a glutathione peroxidase mimicking compound, could counteract the effects of IL-1β, H2O2 and alloxan in rat pancreatic islets and in the rat insulinoma cell line RINm5F (RIN cells). Some of these experiments were also reproduced in human pancreatic islets. Ebselen (20 μM) prevented the increase in nitrite production by rat islets exposed to IL-1β for 6 hr and induced significant protection against the acute inhibitory effects of alloxan or H2O2 exposure, as judged by the preserved glucose oxidation rates. However, ebselen failed to prevent the increase in nitrite production and the decrease in glucose oxidation and insulin release by rat islets exposed to IL-1β for 24 hr. Ebselen prevented the increase in nitrite production by human islets exposed for 14 hr to a combination of cytokines (IL-1β, tumor necrosis factor-α and interferon-γ). In RIN cells, ebselen counteracted both the expression of iNOS mRNA and the increase in nitrite production induced by 6 hr exposure to IL-β but failed to block IL-1β-induced iNOS expression following 24 hr exposure to the cytokine. Moreover, ebselen did not prevent IL-1β-induced NF-κB activation. As a whole, these data indicate that ebselen partially counteracts cytokine-induced NOS activation in pancreatic β-cells, an effect not associated with inhibition of NF-κB activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Annexin A1 (AnxA1) is a protein that displays potent anti-inflammatory properties, but its expression in eye tissue and its role in ocular inflammatory diseases have not been well studied. We investigated the mechanism of action and potential uses of AnxA1 and its mimetic peptide (Ac2-26) in the endotoxin-induced uveitis (EIU) rodent model and in human ARPE-19 cells activated by LPS. In rats, analysis of untreated EIU after 24 and 48 h or EIU treated with topical applications or with a single s.c. injection of Ac2-26 revealed the anti-inflammatory actions of Ac2-26 on leukocyte infiltration and on the release of inflammatory mediators; the systemic administration of Boc2, a formylated peptide receptor (fpr) antagonist, abrogated the peptide's protective effects. Moreover, AnxA1-/- mice exhibited exacerbated EIU compared with wild-type animals. Immunohistochemical studies of ocular tissue showed a specific AnxA1 posttranslational modification in EIU and indicated that the fpr2 receptor mediated the anti-inflammatory actions of AnxA1. In vitro studies confirmed the roles of AnxA1 and fpr2 and the protective effects of Ac2-26 on the release of chemical mediators in ARPE-19 cells. Molecular analysis of NF-κB translocation and IL-6, IL-8, and cyclooxygenase-2 gene expression indicated that the protective effects of AnxA1 occur independently of the NF-κB signaling pathway and possibly in a posttranscriptional manner. Together, our data highlight the role of AnxA1 in ocular inflammation, especially uveitis, and suggest the use of AnxA1 or its mimetic peptide Ac2-26 as a therapeutic approach. Copyright © 2013 by The American Association of Immunologists, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HLA-G has a relevant role in immune response regulation. The overall structure of the HLA-G coding region has been maintained during the evolution process, in which most of its variable sites are synonymous mutations or coincide with introns, preserving major functional HLA-G properties. The HLA-G promoter region is different from the classical class I promoters, mainly because (i) it lacks regulatory responsive elements for IFN-gamma and NF-kappa B, (ii) the proximal promoter region (within 200 bases from the first translated ATG) does not mediate transactivation by the principal HLA class I transactivation mechanisms, and (iii) the presence of identified alternative regulatory elements (heat shock, progesterone and hypoxia-responsive elements) and unidentified responsive elements for IL-10, glucocorticoids, and other transcription factors is evident. At least three variable sites in the 3' untranslated region have been studied that may influence HLA-G expression by modifying mRNA stability or microRNA binding sites, including the 14-base pair insertion/deletion, +3142C/G and +3187A/G polymorphisms. Other polymorphic sites have been described, but there are no functional studies on them. The HLA-G coding region polymorphisms might influence isoform production and at least two null alleles with premature stop codons have been described. We reviewed the structure of the HLA-G promoter region and its implication in transcriptional gene control, the structure of the HLA-G 3' UTR and the major actors of the posttranscriptional gene control, and, finally, the presence of regulatory elements in the coding region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)