908 resultados para Molecular dynamics study


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aggregation of the microtubule associated protein tau (MAPT) within neurons of the brain is the leading cause of tauopathies such as Alzheimer's disease. MAPT is a phospho-protein that is selectively phosphorylated by a number of kinases in vivo to perform its biological function. However, it may become pathogenically hyperphosphorylated, causing aggregation into paired helical filaments and neurofibrillary tangles. The phosphorylation induced conformational change on a peptide of MAPT (htau225−250) was investigated by performing molecular dynamics simulations with different phosphorylation patterns of the peptide (pThr231 and/or pSer235) in different simulation conditions to determine the effect of ionic strength and phosphate charge. All phosphorylation patterns were found to disrupt a nascent terminal β-sheet pattern (226VAVVR230 and 244QTAPVP249), replacing it with a range of structures. The double pThr231/pSer235 phosphorylation pattern at experimental ionic strength resulted in the best agreement with NMR structural characterization, with the observation of a transient α-helix (239AKSRLQT245). PPII helical conformations were only found sporadically throughout the simulations. Proteins 2014; 82:1907–1923. © 2014 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations have been carried out on all the jacalin-carbohydrate complexes of known structure, models of unliganded molecules derived from the complexes and also models of relevant complexes where X-ray structures are not available. Results of the simulations and the available crystal structures involving jacalin permit delineation of the relatively rigid and flexible regions of the molecule and the dynamical variability of the hydrogen bonds involved in stabilizing the structure. Local flexibility appears to be related to solvent accessibility. Hydrogen bonds involving side chains and water bridges involving buried water molecules appear to be important in the stabilization of loop structures. The lectin-carbohydrate interactions observed in crystal structures, the average parameters pertaining to them derived from simulations, energetic contribution of the stacking residue estimated from quantum mechanical calculations, and the scatter of the locations of carbohydrate and carbohydrate-binding residues are consistent with the known thermodynamic parameters of jacalin-carbohydrate interactions. The simulations, along with X-ray results, provide a fuller picture of carbohydrate binding by jacalin than provided by crystallographic analysis alone. The simulations confirm that in the unliganded structures water molecules tend to occupy the positions occupied by carbohydrate oxygens in the lectin-carbohydrate complexes. Population distributions in simulations of the free lectin, the ligands, and the complexes indicate a combination of conformational selection and induced fit. Proteins 2009; 77:760-777.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glaucoma, optic neuropathy with excavation in the optic nerve head and corresponding visual field defect, is one of the leading causes for blindness worldwide. However, visual disability can often be avoided or delayed if the disease is diagnosed at an early stage. Therefore, recognising the risk factors for development and progression of glaucoma may prevent further damage. The purpose of the present study was to evaluate factors associated with visual disability caused by glaucoma and the genetic features of two risk factors, exfoliation syndrome (ES) and a positive family history of glaucoma. The present study material consisted of three study groups 1) deceased glaucoma patients from the Ekenäs practice 2) glaucoma families from the Ekenäs region and 3) population based families with and without exfoliation syndrome from Kökar Island. For the retrospective study, 106 patients with open angle glaucoma (OAG) were identified. At the last visit, 17 patients were visually impaired. Blindness induced by glaucoma was found in one or both eyes in 16 patients and in both eyes in six patients. The cumulative incidence of glaucoma caused blindness for one eye was 6% at 5 years, 9% at 10 years, and 15% at 15 years from initialising the treatment. The factors associated with blindness caused by glaucoma were an advanced stage of glaucoma at diagnosis, fluctuation in intraocular pressure during treatment, the presence of exfoliation syndrome, and poor patient compliance. A cross-sectional population based study performed in 1960-1962 on Kökar Island and the same population was followed until 2002. In total 965 subjects (530 over 50 years) have been examined at least once. The prevalence of exfoliation syndrome (ES) was 18% among subjects older than 50 years. Seventy-five of all 78 ES-positives belonged to the same extended pedigree. According to the segregation and family analysis, exfoliation syndrome seemed to be inherited as an autosomal dominant trait with reduced penetrance. The penetrance was more reduced for males, but the risk for glaucoma was higher in males than in females. To find the gene or genes associated with exfoliation syndrome, a genome wide scan was performed for 64 members (28 ES affected and 36 controls) of the Kökar pedigree. A promising result was found: the highest two-point LOD score of 3.45 (θ=0.04) in chromosome18q12.1-21.33. The presence of mutations in glaucoma genes TIGR/MYOC (myocilin) and OPTN (optineurin) was analysed in eight glaucoma families from the Ekenäs region. An inheritance pattern resembling autosomal dominant mode was detected in all these families. Primary open angle glaucoma or exfoliation glaucoma was found in 35% of 136 family members and 28% were suspected to have glaucoma. No mutations were detected in these families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a highly prevalent disease, and despite several important breakthroughs there are still a many questions unanswered in the clinical, genetic and pathophysiological aspects of migraine research. Migraine has been linked to several other diseases such as epilepsy and stroke, but there are still unsolved issues concerning the true nature of these associations. Three genes predisposing to hemiplegic migraine and several loci associated to migraine have been identified, but so far no genes responsible for common forms of migraine have been recognized. Triptans have provided an important step in migraine treatment, but their usefulness in rare forms of migraine have been controversial. The Finnish Migraine Gene Project (FMGP) includes more than 1600 families and 7500 individuals. We evaluated comorbidity from 1000 consecutive subjects in the FMGP. To search for novel loci, we performed a genome-wide linkage scan in 36 families with high prevalences of migraine with visual aura. We collected 76 subjects from the FMGP who suffer from hemiplegic migraine and have used triptans. Finally, to study possible links between stroke and migraine we evaluated the prevalence of migraine in subjects with cervical artery dissection (CAD) and healthy controls. Migraine was associated with increased prevalence of allergy, hypotension and psychiatric diseases. Additionally, men suffering from migraine with aura had increased prevalence of epilepsy and stroke. Further evidence of association between migraine and epilepsy was found in our linkage study. The parametric two-point linkage analysis showed significant evidence of linkage between migraine aura and a locus on 9q21-q22. Interestingly, the same locus has been associated with occipitotemporal epilepsy. CAD seems to be a migraine risk factor, and therefore a link between stroke and migraine. Notably, CAD seems to alleviate migraine activity further indicating the association between these two conditions. Despite the contraindications of triptans, it seems that they are safe and effective in the abortive treatment of hemiplegic migraine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermally driven Structural phase transition in the organic-inorganic hybrid perovskite (CnH2n+1NH3)(2)PbI4 has been investigated using molecular dynamics (MD) simulations. This system consists of positively charged alkyl-amine chains anchored to a rigid negatively charged PbI4 sheet with the chains organized as bilayers with a herringbone arrangement. Atomistic simulations were performed using ail isothermal-isobaric ensemble over a wide temperature range from 65 to 665 K for different alkyl chain lengths, n = 12, 14, 16, and 18. The simulations are able to reproduce the essential Features of the experimental observations of this system, including the existence of a transition, the linear variation of the transition temperature with alkyl chain length, and the expansion of the bilayer thickness at the transition. By use of the distance fluctuation Criteria, it is Shown that the transition is associated With a Melting of the alkyl chains of the anchored bilayer. Ail analysis of the conformation of the alkyl chains shows increased disorder in the form of gauche defects above due melting transition. Simulations also show that the melting transition is characterized by the complete disappearance of all-trans alkyl chains in the anchored bilayer, in agreement with experimental observations. A conformationally disordered chain has a larger effective cross-sectional area, and above due transition a uniformly tilted arrangement of the anchored chains call no longer be Sustained. At the melt the angular distribution of the orientation of the chains are 110 longer uniform; the chains are splayed allowing for increased space for individual chains of the anchored bilayer. This is reflected in a sharp rise in the ratio of the mean head-to-head to tail-to-tail distance of the chains of the bilayer at the transition resulting in in expansion of the bilayer thickness. The present MD simulations provide a simple explanation as to how changes in conformation of individual alkyl-chains gives rise to the observed increase in the interlayer lattice spacing of (CnH2n+1NH3)(2)PbI4 at the melting transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipase A(2) hydrolyzes phospholipids at the sn-2 position to cleave the fatty-acid ester bond of L-glycerophospholipids. The catalytic dyad (Asp99 and His48) along with a nucleophilic water molecule is responsible for enzyme hydrolysis. Furthermore, the residue Asp49 in the calcium-binding loop is essential for controlling the binding of the calcium ion and the catalytic action of phospholipase A2. To elucidate the structural role of His48 and Asp49, the crystal structures of three active-site single mutants H48N, D49N and D49K have been determined at 1.9 angstrom resolution. Although the catalytically important calcium ion is present in the H48N mutant, the crystal structure shows that proton transfer is not possible from the catalytic water to the mutated residue. In the case of the Asp49 mutants, no calcium ion was found in the active site. However, the tertiary structures of the three active-site mutants are similar to that of the trigonal recombinant enzyme. Molecular-dynamics simulation studies provide a good explanation for the crystallographic results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-diffusion properties of pure CH4 and its binary mixture with CO2 within MY zeolite have been investigated by combining an experimental quasi-elastic neutron scattering (QENS) technique and classical Molecular dynamics simulations. The QENS measurements carried out at 200 K led to an unexpected self-diffusivity profile for Pure CH4 with the presence of a maximum for a loading of 32 CH4/unit cell, which was never observed before for the diffusion of apolar species in azeolite system With large windows. Molecular dynamics simulations were performed using two distinct microscopic models for representing the CH4/NaY interactions. Depending on the model, we are able to fairly reproduce either the magnitude or the profile of the self-diffusivity.Further analysis allowed LIS to provide some molecular insight into the diffusion mechanism in play. The QENS measurements report only a slight decrease of the self-diffusivity of CH4 in the presence of CO2 when the CO2 loading increases. Molecular dynamics simulations successfully capture this experimental trend and suggest a plausible microscopic diffusion mechanism in the case of this binary mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis concerns the dynamics of nanoparticle impacts on solid surfaces. These impacts occur, for instance, in space, where micro- and nanometeoroids hit surfaces of planets, moons, and spacecraft. On Earth, materials are bombarded with nanoparticles in cluster ion beam devices, in order to clean or smooth their surfaces, or to analyse their elemental composition. In both cases, the result depends on the combined effects of countless single impacts. However, the dynamics of single impacts must be understood before the overall effects of nanoparticle radiation can be modelled. In addition to applications, nanoparticle impacts are also important to basic research in the nanoscience field, because the impacts provide an excellent case to test the applicability of atomic-level interaction models to very dynamic conditions. In this thesis, the stopping of nanoparticles in matter is explored using classical molecular dynamics computer simulations. The materials investigated are gold, silicon, and silica. Impacts on silicon through a native oxide layer and formation of complex craters are also simulated. Nanoparticles up to a diameter of 20 nm (315000 atoms) were used as projectiles. The molecular dynamics method and interatomic potentials for silicon and gold are examined in this thesis. It is shown that the displacement cascade expansionmechanism and crater crown formation are very sensitive to the choice of atomic interaction model. However, the best of the current interatomic models can be utilized in nanoparticle impact simulation, if caution is exercised. The stopping of monatomic ions in matter is understood very well nowadays. However, interactions become very complex when several atoms impact on a surface simultaneously and within a short distance, as happens in a nanoparticle impact. A high energy density is deposited in a relatively small volume, which induces ejection of material and formation of a crater. Very high yields of excavated material are observed experimentally. In addition, the yields scale nonlinearly with the cluster size and impact energy at small cluster sizes, whereas in macroscopic hypervelocity impacts, the scaling 2 is linear. The aim of this thesis is to explore the atomistic mechanisms behind the nonlinear scaling at small cluster sizes. It is shown here that the nonlinear scaling of ejected material yield disappears at large impactor sizes because the stopping mechanism of nanoparticles gradually changes to the same mechanism as in macroscopic hypervelocity impacts. The high yields at small impactor size are due to the early escape of energetic atoms from the hot region. In addition, the sputtering yield is shown to depend very much on the spatial initial energy and momentum distributions that the nanoparticle induces in the material in the first phase of the impact. At the later phases, the ejection of material occurs by several mechanisms. The most important mechanism at high energies or at large cluster sizes is atomic cluster ejection from the transient liquid crown that surrounds the crater. The cluster impact dynamics detected in the simulations are in agreement with several recent experimental results. In addition, it is shown that relatively weak impacts can induce modifications on the surface of an amorphous target over a larger area than was previously expected. This is a probable explanation for the formation of the complex crater shapes observed on these surfaces with atomic force microscopy. Clusters that consist of hundreds of thousands of atoms induce long-range modifications in crystalline gold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zervamicin-IIB (Zrv-IIB) is a 16 residue peptaibol which forms voltage-activated, multiple conductance level channels in planar lipid bilayers. A molecular model of Zrv-IIB channels is presented. The structure of monomeric Zrv-IIB is based upon the crystal structure of Zervamicin-Leu. The helical backbone is kinked by a hydroxyproline residue at position 10. Zrv-IIB channels are modelled as helix bundles of from 4 to 8 parallel helices surrounding a central pore. The monomers are packed with their C-terminal helical segments in close contact, and the bundles are stabilized by hydrogen bonds between glutamine 11 and hydroxyproline 10 of adjacent helices. Interaction energy profiles for movement of three different probes species (K+, Cl- and water) through the central pore are analyzed. The conformations of: (a) the sidechain of glutamine 3; (b) the hydroxyl group of hydroxyproline 10; and (c) the C-terminal hydroxyl group are "optimized" in order to maximize favourable interactions between the channel and the probes, resulting in favourable interaction energy profiles for all three. This suggests that conformational flexibility of polar sidechains enables the channel lining to mimic an aqueous environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed molecular simulations are carried out to investigate the effect of temperature on orientational order in cubane molecular crystal. We report a transition from an orientationally ordered to an orientationally disordered plastic crystalline phase in the temperature range 425-450 K. This is similar to the experimentally reported transition at 395 K. The nature of this transition is first order and is associated with a 4.8% increase in unit Cell volume that is comparable to the experimentally reported unit cell volume change of 5.4% (Phys. Rev. Lett. 1997, 78, 4938). An orientational order parameter, eta(T), has been defined in terms of average angle of libration of a molecular 3-fold axis and the orientational melting has been characterized by using eta(T). The orientational melting is associated with an anomaly in specific heat at constant pressure (C-p) and compressibility (kappa). The enthalpy of transition and entropy of transition associated with this orientational melting are 20.8 J mol(-1) and 0.046 J mol(-1) K-1, respectively. The structure of crystalline as well as plastic crystalline phases is characterized by using various radial distribution functions and orientational distribution functions. The coefficient of thermal expansion of the plastic crystalline phase is more than twice that of the crystalline phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleation is the first step in a phase transition where small nuclei of the new phase start appearing in the metastable old phase, such as the appearance of small liquid clusters in a supersaturated vapor. Nucleation is important in various industrial and natural processes, including atmospheric new particle formation: between 20 % to 80 % of atmospheric particle concentration is due to nucleation. These atmospheric aerosol particles have a significant effect both on climate and human health. Different simulation methods are often applied when studying things that are difficult or even impossible to measure, or when trying to distinguish between the merits of various theoretical approaches. Such simulation methods include, among others, molecular dynamics and Monte Carlo simulations. In this work molecular dynamics simulations of the homogeneous nucleation of Lennard-Jones argon have been performed. Homogeneous means that the nucleation does not occur on a pre-existing surface. The simulations include runs where the starting configuration is a supersaturated vapor and the nucleation event is observed during the simulation (direct simulations), as well as simulations of a cluster in equilibrium with a surrounding vapor (indirect simulations). The latter type are a necessity when the conditions prevent the occurrence of a nucleation event in a reasonable timeframe in the direct simulations. The effect of various temperature control schemes on the nucleation rate (the rate of appearance of clusters that are equally able to grow to macroscopic sizes and to evaporate) was studied and found to be relatively small. The method to extract the nucleation rate was also found to be of minor importance. The cluster sizes from direct and indirect simulations were used in conjunction with the nucleation theorem to calculate formation free energies for the clusters in the indirect simulations. The results agreed with density functional theory, but were higher than values from Monte Carlo simulations. The formation energies were also used to calculate surface tension for the clusters. The sizes of the clusters in the direct and indirect simulations were compared, showing that the direct simulation clusters have more atoms between the liquid-like core of the cluster and the surrounding vapor. Finally, the performance of various nucleation theories in predicting simulated nucleation rates was investigated, and the results among other things highlighted once again the inadequacy of the classical nucleation theory that is commonly employed in nucleation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structures of two forms of Mycobacterium leprae single-stranded DNA-binding protein (SSB) have been determined at 2.05 and 2.8 A resolution. Comparison of these structures with the structures of other eubacterial SSBs indicates considerable variation in their quaternary association, although the DNA-binding domains in all of them exhibit the same OB-fold. This variation has no linear correlation with sequence variation, but could be related to variation in protein stability. Molecular-dynamics simulations have been carried out on tetrameric molecules derived from the two forms and the prototype Escherichia coli SSB and the individual subunits of both proteins. Together, the X-ray studies and molecular-dynamics simulations yield information on the relatively rigid and flexible regions of the molecule and on the effect of oligomerization on flexibility. The simulations provide insight into the changes in subunit structure on oligomerization. They also provide insight into the stability and time evolution of the hydrogen bonds/water bridges that connect the two pairs of monomers in the tetramer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordination-driven self-assembly of 1,3,5-benzenetricarboxylate (tma; 1) and oxalato-bridged p-cymeneruthenium(II) building block Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (2) affords an unusual octanuclear incomplete prism Ru-8(eta(6)-p-cymene)(8)(tma)(2)(mu-eta(4)-C2O4)(2)(OMe)(4)](O3SCF3)( 2) (3), which exhibits a remarkable shape-selective binding affinity for neutral phenolic compounds via hydrogen-bonding interactions (p-cymene = p-(PrC6H4Me)-Pr-i). Such a binding was confirmed by single-crystal X-ray diffraction analysis using 1,3,5-trihydroxybenzene as an analyte.