911 resultados para Minimally Invasive Surgical Procedures
Resumo:
INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.
Resumo:
The present work covers the first validation efforts of the EVA Tracking System for the assessment of minimally invasive surgery (MIS) psychomotor skills. Instrument movements were recorded for 42 surgeons (4 expert, 22 residents, 16 novice medical students) and analyzed for a box trainer peg transfer task. Construct validation was established for 7/9 motion analysis parameters (MAPs). Concurrent validation was determined for 8/9 MAPs against the TrEndo Tracking System. Finally, automatic determination of surgical proficiency based on the MAPs was sought by 3 different approaches to supervised classification (LDA, SVM, ANFIS), with accuracy results of 61.9%, 83.3% and 80.9% respectively. Results not only reflect on the validation of EVA for skills? assessment, but also on the relevance of motion analysis of instruments in the determination of surgical competence.
Resumo:
One of the known risk factors for abuse and neglect of the elderly is the decrease in functionat capacity, contributíng to self care dependency of instrumental actívities of daily living and basic activities of daily Itving (OMS, 2015). Methods: Cross-sectional study with non probabilistíc sample of 333 elderly, performed in a hospital, homes and day centers for the elderly. The data collectíon protocol tncluded socio-demographic data, Questíons to elicit Elder Abuse (Carney, Kahan B Paris, 2003 adap. By Ferreira Alves & Sousa, 2005), scale of instrumental actívi - ties of daily living Lawton and Brody and Katz index to assess the levei of independence in actívities of daily living. Objectives: To evaluate the assodation between abuse and neglect in the elderly, instrumental actívitíes of daily living and levei of independence in actívitíes of daily living. Results: Emotional abuse is signifícantty correlated with the levei of independence in activities of daity Uving (p = 0. 000), older peopie with less independence tend to have higher leveis of emotional abuse. The total abuse is signtficantly correlated with the leveis of independence in activittes of daily living (p = 0. 002), less independent elderty tend to suffer greater abuse and neglect. There were no statistically significant associations between abuse and neglect and instrumental activities of daily l1v1ng. Conclusions: The less independent elderly are more vulnerable to situatíons of abuse and neglect, being more exposed to emotional abuse. These results point to the need for health professionals/ nurses develop prevention interventions, including strategies to support carers and early screentng tn less independent elderly. Keywords: Elder abuse. Negligence. Nursing care. Frail elderly. PREVALENCE OF SURGICAL WOUND INFECTION AFTER SURGERY FOR BREAST CÂNCER: SYSTEMATIC REVIEW C. Amaral3, C. Teixeira"'1', F. Sousa'', C. Antãoa "Polythecnic Institute o f Bragança, Bragança, Portugal; bEPI Unit, Public Health Institute, University of Porto, Portugal. Contact details: catarinaisabeln.amaraliSsmaU.com Introduction: Breast câncer is one of the most common mahgnant pathology in European countries, as Portugal, where annual inddence is around 90 new cases per 100,000 women. Breast surgery is the usual treatment for this pathology, however such procedure can be complicated by the infection of surgical site. Objectives: To know the prevalence and determtnants of surgtcal wound infection after breast surgery. Methods: We conducted a systematic review by searching of the Web of Sdence electronic database for articles published over the last s1x years 1n developed countries. Over three hundred dtatíons were obtained and after excludtng citations with reasons, fíve artícles met our inclusion criteria and were included in the present review. Results: Prevalence of surgical wound infection varied across studies between 0. 1% and 12. 5%. Bilateral mastectomy is assodated with higher prevalence of wound infectíon than unilateral mastectomy (3. 6% vs 3, 3%), lumpectomy with immediate breast reconstruction (IBR) is related with higher frequency of wound infectíon than surgery with no IBR (0, 5% vs 0, 1%), also, mastectomy with IBR is associated with higher prevalence of wound infectíon than mastectomy wtth no IBR (1, 5% vs 0, 3%) and breast surgery followed by axiltary lymph nade dissectíon is related with higher prevalence of wound infection than surgical procedures wtth no axillary lymph node dissection (2, 82% vs 1, 66%). Conclusions: Nurses that provide post-operatíve care to women after breast surgery should be aware about risk of wound tnfectíon, partícularly after more invasive procedures.
Resumo:
Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.
Resumo:
Objetivo: Presentar la experiencia con la técnica de corpectomia por sustracción pedicular en fracturas traumática a nivel de la columna dorsal y Lumbar en el Hospital Universitario Mayor en Bogotá y hacer una revisión sistemática de la literatura de esta técnica quirúrgica. Material y métodos: Se realizó un análisis retrospectivo de las historias clínicas de pacientes que consultaron al servicio de neurocirugía entre los años 2013 y 2015 con fracturas traumáticas a nivel de la columna dorsal y lumbosacra. Se realizó un análisis de déficit neurológico pre y posoperatorio por medio de la Clasificación neurológica estándar de lesión medular (ASIA), al igual que tiempos de cirugía, sangrado intraoperatorio y complicaciones. A su vez se realiza una revisión sistemática de la literatura sobre esta técnica quirúrgica. Resultados: El total de pacientes que se sometieron a cirugía fue de 32, de los cuales el tiempo quirúrgico promedio fue de 396 min, se obtuvo un ASIA prequirúrgico B: 50% C: 47% y E: 3%. El ASIA post operatorio fue de B: 9% C: 47% D: 38% E: 6%. Se obtuvo una mejoría del déficit neurológico en el 75% los pacientes intervenidos. El promedio de sangrado fue de 1,223 cc. Se tuvieron 4 complicaciones, 2 hematomas en lecho quirúrgico que requirió re intervención y dos fistulas de líquido cefalorraquídeo las cuales se manejaron con vendaje compresivo y reposo absoluto. Conclusiones: La corpectomia por sustracción pedicular requiere de un adecuado entrenamiento y un grupo multidisciplinario dentro de los que se incluye neuroanestesiologo, a su vez de neurocirujanos entrenados en columna. Este abordaje presenta grandes beneficios como disminución de tiempos quirúrgicos, disminución de sangrado intraoperatorio y disminución de morbilidad entre otras.
Resumo:
Introducción: El Síndrome de Apnea Hipopnea Obstructiva del Sueño es un trastorno respiratorio del sueño mayor ampliamente conocido, con importantes implicaciones para los pacientes y cuya incidencia ha venido en aumento durante los últimos años; comprende diversas manifestaciones clínicas que varían desde el ronquido hasta consecuencias cardiovasculares importantes. Objetivo: Describir la experiencia de los procedimientos quirúrgicos más utilizados para el tratamiento de pacientes con Trastornos Respiratorios del Sueño en la Clínica Rivas. Diseño: Estudio observacional descriptivo. Métodos: Revisión de 366 historias clínicas de pacientes con diagnóstico clínico y Polisomnográfico de SAHOS intervenidos quirúrgicamente debido al Trastorno Respiratorio del Sueño por rechazo de terapia de presión positiva en 3 años de observación. Resultados: Se evaluaron diferencias en medianas de los cambios del IAH, índice de Saturación de oxigeno basal y mínima, y el índice de microdespertares nocturnos tanto prequirúrgica como postquirúrgicamente. Como medida de evaluación secundaria se evaluaron las complicaciones quirúrgicas. Conclusión: En nuestra institución, como centro de referencia en apnea del sueño, la cirugía ha demostrado que disminuye de forma significativa gravedad del SAHOS y disminuye el riesgo de los pacientes con trastornos respiratorios del sueño que han rechazado el dispositivo de presión positiva.
Resumo:
Background The accurate measurement of Cardiac output (CO) is vital in guiding the treatment of critically ill patients. Invasive or minimally invasive measurement of CO is not without inherent risks to the patient. Skilled Intensive Care Unit (ICU) nursing staff are in an ideal position to assess changes in CO following therapeutic measures. The USCOM (Ultrasonic Cardiac Output Monitor) device is a non-invasive CO monitor whose clinical utility and ease of use requires testing. Objectives To compare cardiac output measurement using a non-invasive ultrasonic device (USCOM) operated by a non-echocardiograhically trained ICU Registered Nurse (RN), with the conventional pulmonary artery catheter (PAC) using both thermodilution and Fick methods. Design Prospective observational study. Setting and participants Between April 2006 and March 2007, we evaluated 30 spontaneously breathing patients requiring PAC for assessment of heart failure and/or pulmonary hypertension at a tertiary level cardiothoracic hospital. Methods SCOM CO was compared with thermodilution measurements via PAC and CO estimated using a modified Fick equation. This catheter was inserted by a medical officer, and all USCOM measurements by a senior ICU nurse. Mean values, bias and precision, and mean percentage difference between measures were determined to compare methods. The Intra-Class Correlation statistic was also used to assess agreement. The USCOM time to measure was recorded to assess the learning curve for USCOM use performed by an ICU RN and a line of best fit demonstrated to describe the operator learning curve. Results In 24 of 30 (80%) patients studied, CO measures were obtained. In 6 of 30 (20%) patients, an adequate USCOM signal was not achieved. The mean difference (±standard deviation) between USCOM and PAC, USCOM and Fick, and Fick and PAC CO were small, −0.34 ± 0.52 L/min, −0.33 ± 0.90 L/min and −0.25 ± 0.63 L/min respectively across a range of outputs from 2.6 L/min to 7.2 L/min. The percent limits of agreement (LOA) for all measures were −34.6% to 17.8% for USCOM and PAC, −49.8% to 34.1% for USCOM and Fick and −36.4% to 23.7% for PAC and Fick. Signal acquisition time reduced on average by 0.6 min per measure to less than 10 min at the end of the study. Conclusions In 80% of our cohort, USCOM, PAC and Fick measures of CO all showed clinically acceptable agreement and the learning curve for operation of the non-invasive USCOM device by an ICU RN was found to be satisfactorily short. Further work is required in patients receiving positive pressure ventilation.
Resumo:
Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.
Resumo:
Background: In vitro investigations have demonstrated the importance of the ribcage in stabilising the thoracic spine. Surgical alterations of the ribcage may change load-sharing patterns in the thoracic spine. Computer models are used in this study to explore the effect of surgical disruption of the rib-vertebrae connections on ligament load-sharing in the thoracic spine. Methods: A finite element model of a T7-8 motion segment, including the T8 rib, was developed using CT-derived spinal anatomy for the Visible Woman. Both the intact motion segment and the motion segment with four successive stages of destabilization (discectomy and removal of right costovertebral joint, right costotransverse joint and left costovertebral joint) were analysed for a 2000Nmm moment in flexion/extension, lateral bending and axial rotation. Joint rotational moments were compared with existing in vitro data and a detailed investigation of the load sharing between the posterior ligaments carried out. Findings: The simulated motion segment demonstrated acceptable agreement with in vitro data at all stages of destabilization. Under lateral bending and axial rotation, the costovertebral joints were of critical importance in resisting applied moments. In comparison to the intact joint, anterior destabilization increases the total moment contributed by the posterior ligaments. Interpretation: Surgical removal of the costovertebral joints may lead to excessive rotational motion in a spinal joint, increasing the risk of overload and damage to the remaining ligaments. The findings of this study are particularly relevant for surgical procedures involving rib head resection, such as some techniques for scoliosis deformity correction.
Resumo:
Endoscopic scoliosis correction plays an important part in the surgical options available for treating adolescent idiopathic scoliosis. However, there is a paucity of literature examining optimum methods of analgesia following this type of surgery. The role of intrapleural analgesia is examined and described. In this study, local anaesthetic administration via an intrapleural catheter was found to be a safe and effective method of analgesia following endoscopic scoliosis correction. Post-operative pain following anterior scoliosis correction can be reduced to ‘mild’ levels by combined analgesia regimes. Surgeons may wish to expand its use into open or minimally invasive anterior scoliosis correction or anterior releases.
Resumo:
Introduction. We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini- open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model. Methods. In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone based scaffold plus 0.54µg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion was assessed at six months post-surgery. Results. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL- based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL- based scaffold group in all loading directions in comparison to the other two groups. Conclusions. The results of this study demonstrate that rhBMP-2 plus PCL-based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.
Resumo:
This project was an observational study of outpatients following lower limb surgical procedures for removal of skin cancers. Findings highlight a previously unreported high surgical site failure rate. Results also identified four potential risk factors (increasing age, presence of leg pain, split skin graft and haematoma) which negatively impact on surgical site healing in this population.
Resumo:
Background: Few patients diagnosed with lung cancer are still alive 5 years after diagnosis. The aim of the current study was to conduct a 10-year review of a consecutive series of patients undergoing curative-intent surgical resection at the largest tertiary referral centre to identify prognostic factors. Methods: Case records of all patients operated on for lung cancer between 1998 and 2008 were reviewed. The clinical features and outcomes of all patients with non-small cell lung cancer (NSCLC) stage I-IV were recorded. Results: A total of 654 patients underwent surgical resection with curative intent during the study period. Median overall survival for the entire cohort was 37 months. The median age at operation was 66 years, with males accounting for 62.7 %. Squamous cell type was the most common histological subtype, and lobectomies were performed in 76.5 % of surgical resections. Pneumonectomy rates decreased significantly in the latter half of the study (25 vs. 16.3 %), while sub-anatomical resection more than doubled (2 vs. 5 %) (p < 0.005). Clinico-pathological characteristics associated with improved survival by univariate analysis include younger age, female sex, smaller tumour size, smoking status, lobectomy, lower T and N status and less advanced pathological stage. Age, gender, smoking status and tumour size, as well as T and N descriptors have emerged as independent prognostic factors by multivariate analysis. Conclusion: We identified several factors that predicted outcome for NSCLC patients undergoing curative-intent surgical resection. Survival rates in our series are comparable to those reported from other thoracic surgery centres. © 2012 Royal Academy of Medicine in Ireland.
Resumo:
PURPOSE. We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini- open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model. METHODS. In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone-based scaffold plus 0.54μg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion was assessed at six months post-surgery. RESULTS. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL- based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL- based scaffold group in all loading directions in comparison to the other two groups. CONCLUSION. The results of this study demonstrate that rhBMP-2 plus PCL- based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.
Resumo:
Introduction & aims The demand for evidence of efficacy of treatments in general and orthopaedic surgical procedures in particular is ever increasing in Australia and worldwide. The aim of this study is to share the key elements of an evaluation framework recently implemented in Australia to determine the efficacy of bone-anchored prostheses. Method The proposed evaluation framework to determine the benefit and harms of bone-anchored prostheses for individuals with limb loss was extracted from a systematic review of the literature including seminal studies focusing on clinical benefits and safety of procedures involving screw-type implant (e.g., OPRA) and press-fit fixations (e.g., EEFT, ILP, OPL). [1-64] Results The literature review highlighted that a standard and replicable evaluation framework should focus on: • The clinical benefits with a systematic recording of health-related quality of life (e.g., SF-26, Q-TFA), mobility predictor (e.g., AMPRO), ambulation abilities (e.g., TUG, 6MWT), walking abilities (e.g., characteristic spatio-temporal) and actual activity level at baseline and follow-up post Stage 2 surgery, • The potential harms with systematic recording of residuum care, infection, implant stability, implant integrity, injuries (e.g., falls) after Stage 1 surgery. There was a general consensus around the instruments to monitor most of the benefits and harms. The benefits could be assessed using a wide spectrum of complementary assessments ranging from subjective patient self-reporting to objective measurements of physical activity. However, this latter was assessed using a broad range of measurements (e.g., pedometer, load cell, energy consumption). More importantly, the lack of consistent grading of infections was sufficiently noticeable to impede cross-fixation comparisons. Clearly, a more universal grading system is needed. Conclusions Investigators are encouraged to implement an evaluation framework featuring the domains and instruments proposed above using a single database to facilitate robust prospective studies about potential benefits and harms of their procedure. This work is also a milestone in the development of national and international clinical outcome registries.