An Assessment of Novel Biodegradable Magnesium Alloys for Endovascular Biomaterial Applications
Data(s) |
10/06/2013
|
---|---|
Resumo |
Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices. |
Formato |
application/pdf |
Identificador |
https://digitalcommons.fiu.edu/etd/950 https://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=2045&context=etd |
Publicador |
FIU Digital Commons |
Fonte |
FIU Electronic Theses and Dissertations |
Palavras-Chave | #Magnesium Alloys #Biodegradable #Stents #Corrosion #Corrosion Science #Mg-Zn-Cu #Mg-Zn-Se #Mg-Zn #Biocompatibility #Mechanical Properties #Absorption #Multi-Vitamin Effect #Tissue Growth #Magnesium Corrosion Control #Magnesium Stents #Biodegradable Stents #Cardiovascular #Endovascular Medical Devices #Medical Device #Minimally Invasive Endovascular Device #Dharam Persaud #Dharam Persaud-Sharma #Biomaterials #Biomedical Devices and Instrumentation #Biomedical Engineering and Bioengineering #Equipment and Supplies #Surgical Procedures, Operative #Therapeutics |
Tipo |
text |