964 resultados para Mathematics - Graphic methods
Resumo:
The topology of real-world complex networks, such as in transportation and communication, is always changing with time. Such changes can arise not only as a natural consequence of their growth, but also due to major modi. cations in their intrinsic organization. For instance, the network of transportation routes between cities and towns ( hence locations) of a given country undergo a major change with the progressive implementation of commercial air transportation. While the locations could be originally interconnected through highways ( paths, giving rise to geographical networks), transportation between those sites progressively shifted or was complemented by air transportation, with scale free characteristics. In the present work we introduce the path-star transformation ( in its uniform and preferential versions) as a means to model such network transformations where paths give rise to stars of connectivity. It is also shown, through optimal multivariate statistical methods (i.e. canonical projections and maximum likelihood classification) that while the US highways network adheres closely to a geographical network model, its path-star transformation yields a network whose topological properties closely resembles those of the respective airport transportation network.
Resumo:
This paper describes the first phase of a project attempting to construct an efficient general-purpose nonlinear optimizer using an augmented Lagrangian outer loop with a relative error criterion, and an inner loop employing a state-of-the art conjugate gradient solver. The outer loop can also employ double regularized proximal kernels, a fairly recent theoretical development that leads to fully smooth subproblems. We first enhance the existing theory to show that our approach is globally convergent in both the primal and dual spaces when applied to convex problems. We then present an extensive computational evaluation using the CUTE test set, showing that some aspects of our approach are promising, but some are not. These conclusions in turn lead to additional computational experiments suggesting where to next focus our theoretical and computational efforts.
Resumo:
A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to second-order stationary points in situations in which first-order methods fail are exhibited.
Resumo:
Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented.
Resumo:
This article is dedicated to harmonic wavelet Galerkin methods for the solution of partial differential equations. Several variants of the method are proposed and analyzed, using the Burgers equation as a test model. The computational complexity can be reduced when the localization properties of the wavelets and restricted interactions between different scales are exploited. The resulting variants of the method have computational complexities ranging from O(N(3)) to O(N) (N being the space dimension) per time step. A pseudo-spectral wavelet scheme is also described and compared to the methods based on connection coefficients. The harmonic wavelet Galerkin scheme is applied to a nonlinear model for the propagation of precipitation fronts, with the front locations being exposed in the sizes of the localized wavelet coefficients. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model.
Resumo:
The regimen of environmental flows (EF) must be included as terms of environmental demand in the management of water resources. Even though there are numerous methods for the computation of EF, the criteria applied at different steps in the calculation process are quite subjective whereas the results are fixed values that must be meet by water planners. This study presents a friendly-user tool for the assessment of the probability of compliance of a certain EF scenario with the natural regimen in a semiarid area in southern Spain. 250 replications of a 25-yr period of different hydrological variables (rainfall, minimum and maximum flows, ...) were obtained at the study site from the combination of Monte Carlo technique and local hydrological relationships. Several assumptions are made such as the independence of annual rainfall from year to year and the variability of occurrence of the meteorological agents, mainly precipitation as the main source of uncertainty. Inputs to the tool are easily selected from a first menu and comprise measured rainfall data, EF values and the hydrological relationships for at least a 20-yr period. The outputs are the probabilities of compliance of the different components of the EF for the study period. From this, local optimization can be applied to establish EF components with a certain level of compliance in the study period. Different options for graphic output and analysis of results are included in terms of graphs and tables in several formats. This methodology turned out to be a useful tool for the implementation of an uncertainty analysis within the scope of environmental flows in water management and allowed the simulation of the impacts of several water resource development scenarios in the study site.
Resumo:
A Teoria Econômica Emprega Dois Métodos: o Método Hipotético-Dedutivo, Utilizado Principalmente Pelos Economistas Neoclássicos, e o Método Histórico-Dedutivo, Adotado Pelos Economistas Clássicos e Keynesianos. Ambos são Legítimos, Mas, Desde que a Economia é Substantiva, não uma Ciência Metodológica, Onde o Objeto é o Sistema Econômico, o Método Histórico-Dedutivo é o Mais Apropriado. o Método Hipotético-Dedutivo Permite que o Economista Desenvolva Ferramentas para Analisar o Sistema Econômico, Mas Falha ao Analisar o Sistema como um Todo. em Contrapartida, o Método Histórico-Dedutivo Parte da Observação Empírica da Realidade e da Busca por Regularidades e Tendências. é um Método Empírico, Apropriado para as Ciências Substantivas que Tratam de Sistemas Abertos, como é o Caso da Economia.
Resumo:
The stability of multistep second derivative methods for integro-differential equations is examined through a test equation which allows for the construction of the associated characteristic polynomial and its region of stability (roots in the unit circle) at a proper parameter space. (c) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Objective: The purpose of this study was to compare the dental movement that occurs during the processing of maxillary complete dentures with 3 different base thicknesses, using 2 investment methods, and microwave polymerization.Methods: A sample of 42 denture models was randomly divided into 6 groups (n = 7), with base thicknesses of 1.25, 2.50, and 3.75 mm and gypsum or silicone flask investment. Points were demarcated on the distal surface of the second molars and on the back of the gypsum cast at the alveolar ridge level to allow linear and angular measurement using AutoCAD software. The data were subjected to analysis of variance with double factor, Tukey test and Fisher (post hoc).Results: Angular analysis of the varying methods and their interactions generated a statistical difference (P = 0.023) when the magnitudes of molar inclination were compared. Tooth movement was greater for thin-based prostheses, 1.25 mm (-0.234), versus thick 3.75 mm (0.2395), with antagonistic behavior. Prosthesis investment with silicone (0.053) showed greater vertical change compared with the gypsum investment (0.032). There was a difference between the point of analysis, demonstrating that the changes were not symmetric.Conclusions: All groups evaluated showed change in the position of artificial teeth after processing. The complete denture with a thin base (1.25 mm) and silicone investment showed the worst results, whereas intermediate thickness (2.50 mm) was demonstrated to be ideal for the denture base.
Resumo:
We consider a procedure for obtaining a compact fourth order method to the steady 2D Navier-Stokes equations in the streamfunction formulation using the computer algebra system Maple. The resulting code is short and from it we obtain the Fortran program for the method. To test the procedure we have solved many cavity-type problems which include one with an analytical solution and the results are compared with results obtained by second order central differences to moderate Reynolds numbers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We generalize a procedure proposed by Mancera and Hunt [P.F.A. Mancera, R. Hunt, Some experiments with high order compact methods using a computer algebra software-Part 1, Appl. Math. Comput., in press, doi: 10.1016/j.amc.2005.05.015] for obtaining a compact fourth-order method to the steady 2D Navier-Stokes equations in the streamfunction formulation-vorticity using the computer algebra system Maple, which includes conformal mappings and non-uniform grids. To analyse the procedure we have solved a constricted stepped channel problem, where a fine grid is placed near the re-entrant corner by transformation of the independent variables. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The supply chain management, postponement and demand management operations are of strategic importance to the economic success of organizations because they directly influence the production process. The aim of this paper is to analyze the influence of the postponement in an enterprise production system with make-to-stock and with seasonal demand. The research method used was a case study, the instruments of data collection were semi-structured interviews, document analysis and site visits. The research is based on the following issues: Demand Management which can be understood as a practice that allows you to manage and coordinate the supply chain in reverse, in which consumers trigger actions for the delivery of products. The Supply Chain Management is able to allow the addition of value, exceeding the expectations of consumers, developing a relationship with suppliers and customer's win-win. The Postponement strategy must fit the characteristics of markets that require variety of customized products and services, lower cost and higher quality, aiming to support decision making. The production system make-to-stock shows enough interest to organizations that are operating in markets with high demand variability. © 2011 IEEE.
Resumo:
Background: Doppler ultrasonography is a non-invasive real time pulse-wave technique recently used for the transrectal study of the reproductive system hemodynamics in large animals. This technic is based in the Doppler Effect Principle that proposes the change in frequency of a wave for an observer (red blood cells) moving relative to the source of the respective wave (ultrasonic transducer). This method had showed to be effective and useful for the evaluation of the in vivo equine reproductive tract increasing the diagnostic, monitoring, and predictive capabilities of theriogenology in mares. However, an accurate and truthful ultrasonic exam requires the previous knowledge of the Doppler ultrasonography principles. Review: In recent years, the capabilities of ultrasound flow imaging have increased enormously. The current Doppler ultrasound machines offer three methods of evaluation that may be used simultaneously (triplex mode). In B-mode ultrasound, a linear array of transducers simultaneously scans a plane through the tissue that can be viewed as a two-dimensional gray-scale image on screen. This mode is primarily used to identify anatomically a structure for its posterior evaluation using colored ultrasound modes (Color or Spectral modes). Colored ultrasound images of flow, whether Color or Spectral modes, are essentially obtained from measurements of moving red cells. In Color mode, velocity information is presented as a color coded overlay on top of a B-mode image, while Pulsed Wave Doppler provides a measure of the changing velocity throughout the cardiac cycle and the distribution of velocities in the sample volume represented by a spectral graphic. Color images conception varies according to the Doppler Frequency that is the difference between the frequency of received echoes by moving blood red cells and wave frequency transmitted by the transducer. To produce an adequate spectral graphic it is important determine the position and size of the simple gate. Furthermore, blood flow velocity measurement is influence by the intersection angle between ultrasonic pulses and the direction of moving blood-red cells (Doppler angle). Objectively colored ultrasound exam may be done on large arteries of the reproductive tract, as uterine and ovary arteries, or directly on the target tissue (follicle, for example). Mesovarium and mesometrium attachment arteries also can be used for spectral evaluation of the equine reproductive system. Subjectively analysis of the ovarian and uterine vascular perfusion must be done directly on the corpus luteum, follicular wall and uterus (endometrium and myometrium associated), respectively. Power-flow imaging has greater sensitivity to weak blood flow and independent of the Doppler angle, improving the evaluation of vessels with small diameters and slow blood flow. Conclusion: Doppler ultrasonography principles, methods of evaluation and reproductive system anatomy have been described. This knowledge is essential for the competent equipment acquisition and precise collection and analysis of colored ultrasound images. Otherwise, the reporting of inconsistent and not reproducible findings may result in the discredit of Doppler technology ahead of the scientific veterinary community.
Resumo:
Pós-graduação em Educação Matemática - IGCE