871 resultados para Mandelic acids
Resumo:
Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non-invasively assessed by (1)H-MRS in vivo. We used (1)H-MRS to characterize the hepatic fatty-acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra-short TE of 2.8 ms, confounding effects from T2 relaxation and J-coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono-unsaturated (MUFA) and poly-unsaturated (PUFA) fatty-acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo (1) H-MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty-acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty-acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ-induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of (1)H-MRS in vivo to monitor changes in the composition of the hepatic fatty-acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid-lowering interventions in the scope of metabolic disorders.
Resumo:
BACKGROUND/AIMS: Fibroblast growth factor 21 (FGF21) is a key mediator of glucose and lipid metabolism. However, the beneficial effects of exogenous FGF21 administration are attenuated in obese animals and humans with elevated levels of circulating free fatty acids (FFA). METHODS: We investigated in vitro how FFA impact FGF21 effects on hepatic lipid metabolism. RESULTS: In the absence of FFA, FGF21 reduced lipogenesis and increased lipid oxidation in HepG2 cells. Inhibition of lipogenesis was associated with a down regulation of SREBP-1c, FAS and SCD1. The lipid-lowering effect was associated with AMPK and ACC phosphorylation, and up regulation of CPT-1α expression. Further, FGF21 treatment reduced TNFα gene expression, suggesting a beneficial action of FGF21 on inflammation. In contrast, the addition of FFA abolished the positive effects of FGF21 on lipid metabolism. CONCLUSION: In the absence of FFA, FGF21 improves lipid metabolism in HepG2 cells and reduces the inflammatory cytokine TNFα. However, under high levels of FFA, FGF21 action on lipid metabolism and TNFα gene expression is impaired. Therefore, FFA impair FGF21 action in HepG2 cells potentially through TNFα.
Resumo:
Monomers allowing for the introduction of [2,5-dimethylfuran]-protected maleimides into polyamides such as peptides, peptide nucleic acids, and peptoids were prepared, as well as the corresponding oligomers. Suitable maleimide deprotection conditions were established in each case. The stability of the adducts generated by Michael-type maleimide-thiol reaction and Diels-Alder cycloaddition to maleimide deprotection conditions was exploited to prepare a variety of conjugates from peptide and PNA scaffolds incorporating one free and one protected maleimide. The target molecules were synthesized by using two subsequent maleimide-involving click reactions separated by a maleimide deprotection step. Carrying out maleimide deprotection and conjugation simultaneously gave better results than performing the two reactions subsequently.
Resumo:
Identification of chemical compounds with specific biological activities is an important step in both chemical biology and drug discovery. When the structure of the intended target is available, one approach is to use molecular docking programs to assess the chemical complementarity of small molecules with the target; such calculations provide a qualitative measure of affinity that can be used in virtual screening (VS) to rank order a list of compounds according to their potential to be active. rDock is a molecular docking program developed at Vernalis for high-throughput VS (HTVS) applications. Evolved from RiboDock, the program can be used against proteins and nucleic acids, is designed to be computationally very efficient and allows the user to incorporate additional constraints and information as a bias to guide docking. This article provides an overview of the program structure and features and compares rDock to two reference programs, AutoDock Vina (open source) and Schrodinger's Glide (commercial). In terms of computational speed for VS, rDock is faster than Vina and comparable to Glide. For binding mode prediction, rDock and Vina are superior to Glide. The VS performance of rDock is significantly better than Vina, but inferior to Glide for most systems unless pharmacophore constraints are used; in that case rDock and Glide are of equal performance. The program is released under the Lesser General Public License and is freely available for download, together with the manuals, example files and the complete test sets, at http://rdock.sourceforge.net/
Resumo:
The total synthesis of seven here-to-fore unreported aromatic aminoalkanethiosulfuric acids, their physical properties and those of the aminoalcohol and bromoalkanamine intermediates are reported. All structures were established by including ¹H and 13C NMR, IR and MS spectroscopy and elemental analysis.
Resumo:
Gas chromatography (GC) with trimethylsilyl derivative formation was compared to high-performance liquid chromatography (HPLC) for quantification of organic acids (OAs) in two jaboticaba (Myrciaria) fruit (pulp and pericarp) varieties (Sabará and Açu Paulista). Succinic and citric acids were the major OAs found in all the samples analyzed. Besides being much more tedious, the results obtained with GC were significantly lower than HPLC (p<0.05) when the data (acids, variety, two parts and flowering days) were considered together. The presence of both acids was confirmed by gas chromatography-mass spectrometry (GC-MS).
Resumo:
We have developed an easy method for the synthesis of thirteen compounds derived from 1,2,4-triazoles through a carboxylic acid and hydrazinophthalazine reaction, with a 75-85% yield mediated by the use of agents such as 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide hydrochloride and 1-hydroxybenzotriazole. The operational simplicity of this method and the good yield of products make it valuable for the synthesis of new compounds with pharmacological activity.
Resumo:
Liquid-liquid extraction is a mass transfer process for recovering the desired components from the liquid streams by contacting it to non-soluble liquid solvent. Literature part of this thesis deals with theory of the liquid-liquid extraction and the main steps of the extraction process design. The experimental part of this thesis investigates the extraction of organic acids from aqueous solution. The aim was to find the optimal solvent for recovering the organic acids from aqueous solutions. The other objective was to test the selected solvent in pilot scale with packed column and compare the effectiveness of the structured and the random packing, the effect of dispersed phase selection and the effect of packing material wettability properties. Experiments showed that selected solvent works well with dilute organic acid solutions. The random packing proved to be more efficient than the structured packing due to higher hold-up of the dispersed phase. Dispersing the phase that is present in larger volume proved to more efficient. With the random packing the material that was wetted by the dispersed phase was more efficient due to higher hold-up of the dispersed phase. According the literature, the behavior is usually opposite.
Resumo:
This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.
Resumo:
A simple liquid chromatographic method for the simultaneous determination of creatinine, hippuric acid, mandelic acid, phenylglyoxylic acid and o, m and p-methylhippuric acids was developed and validated. Sample preparation was only dilution with water (1:10), followed by centrifugation. Analysis was performed in a reversed phase column (Lichrospher RP 8ec), 250 x 4.0 mm, with isocratic elution with phosphate buffer pH 2.3 and acetonitrile (90:10, v/v). The method presents adequate linearity, precision and accuracy and allows the simultaneous determination of the biomarkers of exposure to toluene, xylene and styrene together with creatinine, reducing cost and laboratory time.
Resumo:
The carrot leaf dehydration conditions in air circulation oven were optimized through response surface methodology (RSM) for minimizing the degradation of polyunsaturated fatty acids, particularly alpha-linolenic (LNA, 18:3n-3). The optimized leaf drying time and temperature were 43 h and 70 ºC, respectively. The fatty acids (FA) were investigated using gas chromatography equipped with a flame ionization detector and fused silica capillary column; FA were identified with standards and based on equivalent-chain-length. LNA and other FA were quantified against C21:0 internal standard. After dehydration, the amount of LNA, quantified in mg/100 g dry matter of dehydrated carrot leaves, were 984 mg.
Resumo:
Different methods to determine total fat (TF) and fatty acids (FA), including trans fatty acids (TFA), in diverse foodstuffs were evaluated, incorporating gravimetric methods and gas chromatography with flame ionization detector (GC/FID), in accordance with a modified AOAC 996.06 method. Concentrations of TF and FA obtained through these different procedures diverged (p< 0.05) and TFA concentrations varied beyond 20 % of the reference values. The modified AOAC 996.06 method satisfied both accuracy and precision, was fast and employed small amounts of low toxicity solvents. Therefore, the results showed that this methodology is viable to be adopted in Brazil for nutritional labeling purposes.
Resumo:
In the current study, an alternative method has been proposed for simultaneous analysis of palmitic, stearic, oleic, linoleic, and linolenic acids by capillary zone electrophoresis (CZE) using indirect detection. The background electrolyte (BGE) used for the analysis of these fatty acids (FAs) consisted of 15.0 mmol L−1 NaH2PO4/Na2HPO4 at pH 6.86, 4.0 mmol L−1 SDBS, 8.3 mmol L−1 Brij 35, 45% v/v acetonitrile (can), and 2.1% n-octanol. The FAs quantification of FAs was performed using a response factor approach, which provided a high analytical throughput for the real sample. The CZE method, which was applied successfully for the analysis of pequi pulp, has advantages such as short analysis time, absence of lipid fraction extraction and derivatization steps, and no significant difference in the 95% confidence intervals for FA quantification results, compared to the gas chromatography official method (AOCS Ce 1h-05).