395 resultados para Magnetron sputtering
Resumo:
Erbium-activated silica-based planar waveguides were prepared by three different technological routes: RF-sputtering, sol-gel and ion exchange. Various parameters of preparation were varied in order to optimize the waveguides for operation in the NIR region. Particular attention was devoted to the minimization of the losses and the increase of the luminescence efficiency of the metastable I-4(13/2) state of the Er3+ ion. Waveguide properties were determined by m-line spectroscopy and loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical processes related to the luminescence of the Er3+ ions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The magnetic characteristics of Ga1-xMnxN nanocrystalline films (x = 0.08 and x = 0.18), grown by reactive sputtering onto amorphous silica substrates (a-SiO2), are shown. Further than the dominant paramagnetic-like behaviour, both field- and temperature-dependent magnetization curves presented some particular features indicating the presence of secondary magnetic phases. A simple and qualitative analysis based on the Brillouin function assisted the interpretation of these secondary magnetic contributions, which were tentatively attributed to antiferromagnetic and ferromagnetic phases. © 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Aluminum acetylacetonate has been reported as a precursor for the deposition of alumina films using different approaches. In this work, alumina-containing films were prepared by plasma sputtering this compound, spread directly on the powered lowermost electrode of a reactor, while grounding the substrates mounted on the topmost electrode. Radiofrequency power (13.56 MHz) was used to excite the plasma from argon atmosphere at a working pressure of 11 Pa. The effect of the plasma excitation power on the properties of the resulting films was studied. Film thickness and hardness were measured by profilometry and nanoindentation, respectively. The molecular structure and chemical composition of the layers were analyzed by Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Surface micrographs, obtained by scanning electron microscopy, allowed the determination of the sample morphology. Grazing incidence X-ray diffraction was employed to determine the structure of the films. Amorphous organic layers were deposited with thicknesses of up to 7 μm and hardness of around 1.0 GPa. The films were composed by aluminum, carbon, oxygen and hydrogen, their proportions being strongly dependent on the power used to excite the plasma. A uniform surface was obtained for low-power depositions, but particulates and cracks appeared in the high-power prepared materials. The presence of different proportions of aluminum oxide in the coatings is ascribed to the different activations promoted in the metalorganic molecule once in the plasma phase. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Calcium copper titanate, CaCu3Ti4O12, CCTO, thin films with polycrystalline nature have been deposited by RF sputtering on Pt/Ti/SiO2/Si (100) substrates at a room temperature followed by annealing at 600 °C for 2 h in a conventional furnace. The CCTO thin film present a cubic structure with lattice parameter a = 7.379 ±0.001 Å free of secondary phases. The observed electrical features of CCTO thin films are highly dependent on the [CaO12], [CaO 4], [CuO11], [CuO11Vx 0] and [TiO5.VO] clusters. The CCTO film capacitor showed a dielectric loss of 0.40 and a dielectric permittivity of 70 at 1 kHz. The J-V behavior is completely symmetrical, regardless of whether the conduction is limited by interfacial barriers or by bulk-like mechanisms. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Thin films of Ga1-xMnxN have great interest in its potential for control of electron spin (spintronics), in most cases this material is synthesized by techniques that have a high degree of control the deposition parameters, such as molecular beam epitaxy (MBE) and deposition of metalorganic chemical vapor deposition (MOCVD). The sputtering technique is an alternative route to produce such materials. Here we study the film deposition Ga1-xMnxN by reactive sputtering technique and apply enhancements such as a glove box, a residual gas analyzer and temperature control system, in order to growth films epitaxially using an analysis of the preconditions of films analyzed by spectroscopic techniques and microscopic. These procedures helped to improve the technique of deposition by cleaning substrates in an inert environment, and by the analysis of trace gases and heating the substrate holder as explained in the literature. Through the applications and comparisons it can be pointed out that the technique has the advantage of its simplicity and relatively low cost compared to MBE and MOCVD, but produces polycrystalline material
Resumo:
Silicon carbide (SiC) is considered a suitable candidate for high-power, high-frequency devices due to its wide bandgap, high breakdown field, and high electron mobility. It also has the unique ability to synthesize graphene on its surface by subliming Si during an annealing stage. The deposition of SiC is most often carried out using chemical vapor deposition (CVD) techniques, but little research has been explored with respect to the sputtering of SiC. Investigations of the thin film depositions of SiC from pulse sputtering a hollow cathode SiC target are presented. Although there are many different polytypes of SiC, techniques are discussed that were used to identify the film polytype on both 4H-SiC substrates and Si substrates. Results are presented about the ability to incorporate Ge into the growing SiC films for the purpose of creating a possible heterojunction device with pure SiC. Efforts to synthesize graphene on these films are introduced and reasons for the inability to create it are discussed. Analysis mainly includes crystallographic and morphological studies about the deposited films and their quality using x-ray diffraction (XRD), reflection high energy electron diffraction (RHEED), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Auger electron spectroscopy (AES) and Raman spectroscopy. Optical and electrical properties are also discussed via ellipsometric modeling and resistivity measurements. The general interpretation of these analytical experiments indicates that the films are not single crystal. However, the majority of the films, which proved to be the 3C-SiC polytype, were grown in a highly ordered and highly textured manner on both (111) and (110) Si substrates.
Resumo:
Reactive Sputter Magnetron (RSM) is a widely used technique to thin films growing of compounds both, in research laboratories and in industrial processes. The nature of the deposited compound will depend then on the nature of the magnetron target and the nature of the ions generated in the plasma. One important aspect of the problem is the knowledge of the evolution of the film during the process of growing itself. In this work, we present the design, construction of a chamber to be installed in the Huber goniometer in the XRD2 line of LNLS in Campinas, which allows in situ growing kinetic studies of thin films.
Resumo:
The effect of terbium (Tb) doping on the photoluminescence (PL) of crystalline aluminum nitride (c-AlN) and amorphous hydrogenated silicon carbide (a-SiC:H) thin films has been investigated for different Tb atomic concentrations. The samples were prepared by DC and RF magnetron reactive sputtering techniques covering the concentration range of Tb from 0.5 to 11 at.%. The Tb-related light emission versus the Tb concentration is reported for annealing temperatures of 450 °C, 750 °C and 1000 °C. In the low concentration region the intensity exhibits a linear increase and its slope is enhanced with the annealing temperature giving an activation energy of 0.106 eV in an Arrhenius plot. In the high concentration region an exponential decay is recorded which is almost independent on the host material, its structure and the annealing process.