980 resultados para MQW (multiple quantum wells)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared absorption spectroscopy, optical transient current spectroscopy (OTCS), and photoluminescence (PL) spectroscopy are used to investigate the annealing induced evolution of defects in low-temperature (LT)-grown GaAs-related materials. Two LT samples of bulk GaAs (sample A) and GaAs/AlxGa1-xAs multiple-quantum-well. (MQW) structure (sample B) were grown at 220 and 320 degreesC on (001) GaAs substrates, respectively. A strong defect-related absorption band has been observed in both as-grown samples A and B. It becomes weaker in samples annealed at temperatures above 600 degreesC. In sample A, annealed in the range of 600-800 degreesC, a large negative decay signal of the optical transient current (OTC) is observed in a certain range of temperature, which distorts deep-level spectra measured by OTCS, making it difficult to identify any deep levels. At annealing temperatures of 600 and 700 degreesC, both As-Ga antisite and small As cluster-related deep levels are identified in sample B. It is found that compared to the As cluster, the As-Ga antisite has a larger activation energy and carrier capture rate. At an annealing temperature of 800 degreesC, the large negative decay signal of the OTC is also observed in sample B. It is argued that this negative decay signal of the OTC is related to large arsenic clusters. For sample B, transient PL spectra have also been measured to study the influence of the, defect evolution on optical properties of LT GaAs/AlxGa1-xAs MQW structures. Our results clearly identify a defect evolution from AS(Ga) antisites to arsenic clusters after annealing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of ion-induced damage on GaNAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy employing a DC plasma as the N source was investigated. Ion-induced damage results in: (i) an observed disappearance of pendellosung fringes in the X-ray diffraction pattern of the sample; (ii) a drastic decrease in intensity and a broadening in the full-width at half-maximum of photoluminescence spectra. It was shown that ion-induced damage strongly affected the bandedge potential fluctuations of the QWs. The bandedge potential fluctuations for the samples grown with and without ion removal magnets (IRMs) are 44 and 63 meV, respectively. It was found that the N-As atomic interdiffusion at the interfaces of the QWs was enhanced by the ion damage-induced defects. The estimated activation energies of the N-As atomic interdiffusion for the samples grown with and without IRMs are 3.34 and 1.78 eV, respectively. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical properties and the band lineup in GaNAs/GaAs single quantum wells (SQWs) grown by molecular beam epitaxy (MBE) using photoluminescence (PL) technique were investigated. It was found that the low-temperature PL is dominated by the intrinsic localized exciton emission. By fitting the experimental datawith a simple calculation, band offset of the GaN0.015As0.985/GaAs heterostructure was estimated. Moreover, DeltaE(c), the discontinuity of the conduction band was found to be a nonlinear function of the nitrogen composition (chi) and the average variation of DeltaE(c) is about 0. 110eV per % N, such smaller than that reported on the literature to (0.156 similar to 0.175 eV/N %). In addition, Qc has little change whtn N composition increares, with an experimential relation of QC approximate tox(0.25). The band bowing coefficient (b) was also studied in this paper. The measured band bowing coefficient shows a strong function of chi, giving an experimental support to the theoretic calculation of Wei Su-Huai and Zunger Alex (1996).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a two-parameter wave function, we calculate variationally the binding energy of an exciton bound to an ionized donor impurity (D+,X) in GaAs-AlxGa1-xAs quantum wells for the values of the well width from 10 to 300 Angstrom, when the dopant is located in the center of the well and at the edge of the well. The theoretical results confirm that the previous experimental speculation proposed by Reynolds tit al. [Phys. Rev. B 40, 6210 (1989)] is the binding energy of D+,X for the dopant at the edge of the well. in addition, we also calculate the center-of-mass wave function of the exciton and the average interparticle distances. The results are discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The circular polarization of excitonic luminescence is studied in CdTe/Cd1-xMgxTe quantum wells with excess electrons of low density in an external magnetic field. It is observed that the circular polarization of X and X- emissions has opposite signs and is influenced by the excess electron density. If the electron density is relatively high so that the emission intensity of the negatively charged excitons X- is much stronger than that of the neutral excitons X, a stronger circular polarization degree of both X and X- emissions is observed. We find that the circular polarization of both X- and X emissions is caused by the spin polarization of the excess electrons due to the electron-spin-dependent nature of the formation of X-. If the electron density is relatively low and the emission intensity of X- is comparable to that of X, the circular polarization degree of X and X- emissions is considerably smaller. This fact is interpreted as due to a depolarization of the excess electron spins, which is induced by the spin relaxation of X-.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical properties of above- and below-band-edge transitions have been investigated by incorporating In atoms into GaNAs/GaAs single quantum wells. The experimental results show that with increasing In concentration the interband luminescence is improved and the luminescence intensity below the band edge in GaInNAs/GaAs decreases significantly. An interpretation is given that N atoms are preferable to form a covalent bond with In than with Ga atoms in a GaInNAs alloy, due to the compensation of the atomic-size difference between In and N atoms on the GaAs substrate. The photoreflectance spectra of the GaInNAs/GaAs single quantum well support the assignment of an intrinsic mechanism to the high-energy luminescence peak. (C) 2000 American Institute of Physics. [S0003- 6951(00)01752-6].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A back-incident Si-0.65 Ge-0.35/Si multiple quantum-well resonant-cavity-enhanced photodetector operating near 1.3 mum is demonstrated on a separation-by-implantation-oxygen substrate. The resonant cavity is composed of an electron-beam evaporated SiO2-Si distributed Bragg reflector as a top mirror and the interface between the buried SiO2 and the Si substrate as a bottom mirror. We have obtained the responsivity as high as 31 mA/WI at 1.305 mum and the full width at half maximum of 14 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence (PL) measurements were performed on several series of single-side Si-doped pseudomorphic high electron mobility transistors (p-HEMTs) quantum well (QW) samples, with different spacer layer widths, well widths and Si delta -doped concentrations , under different temperatures and excitation power densities. The dynamic competitive luminescence mechanism between the radiations of e2-hh1 and e1-hh1 was discussed in detail. The confining potential, subband energies, corresponding envelope functions, subband occupations and transferring efficiency etc., were calculated by self-consistent finite differential method at different temperatures in comparison with the present experiment results. The relative variation of the integrated luminescence intensity of the two transitions (e1-hh1 and e2-hh1) was found to be dependent on the temperature and the structure's properties, e. g. spacer layer width, dopant concentration and well width.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the effect of rapid thermal annealing (RTA) on GaInNAs/GaAs quantum wells (QWs) grown by molecular-beam epitaxy using a dc plasma as the N source. It was found that RTA at low temperature (LT, 650 degrees C) and high temperature (HT, 900 degrees C) could both improve the QW quality significantly. To clarify the mechanism of quality improvement by RTA, a magnetic field perpendicular to the path of the N plasma flux was applied during the growth of the GaInNAs layers for the sake of comparison. It was found that LT-RTA mainly removed dislocations at interfaces related to the ion bombardment, whereas, HT-RTA further removed dislocations originating from the growth. LT-RTA caused only a slight blueshift of photoluminescence peak wavelength, probably due to defect-assisted interdiffusion of In-Ga at the QW interfaces. The blueshift caused by HT-RTA, on the other hand, was much larger. It is suggested that this is due to the fast defect-assisted diffusion of N-As at the QW interfaces. As defects are removed by annealing, the diffusion of In-Ga at interfaces would be predominant. (C) 2000 American Institute of Physics. [S0003- 6951(00)01535-7].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel composite InxGa1-xAs/GaAs/GaAs/AlxGa1-xAs multiple quantum well material with different well widths was studied as a new kind of photoelectrode in a photoelectrochemical cell. The photocurrent spectrum and photocurrent-electrode potential curve were measured in ferrocene nonaqueous solution. Pronounced quantization effects and strong exciton absorption were observed in the photocurrent spectrum. The effects of surface states and interfacial states on the photocurrent-electrode potential curve are discussed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding energy of an exciton bound to an ionized donor impurity (D+,X) located st the center or the edge in GaAs-AlxGa1-xAs quantum wells is calculated variationally for the well width from 10 to 300 Angstrom by using a two-parameter wave function, The theoretical results are discussed and compared with the previous experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the effect of rapid thermal annealing (RTA) on highly strained InGaAs/GaAs quantum wells by using photoluminescence (PL) and double-crystal X-ray diffraction (DCXRD) measurements. It is found that a distinct additional PL emission peak can be observed for the annealed samples. This PL emission possesses features similar to the PL emission from InGaAs/GaAs quantum dots (QDs) with the same indium content. It is proposed that this emission stems from QDs, which were formed during the annealing process. This formation is attributed to the favorable diffusion due to the inhomogeneous strain distribution in the InGaAs layer intersurface. The DCXRD measurements also confirm that the dominant relaxation is strain enhanced diffusion under the low annealing temperatures. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron cyclotron resonance (CR) has been studied in magnetic fields up to 32 T in two heavily modulation-delta-doped GaAs/Al0.3Ga0.7As single quantum well samples. Little effect on electron CR is observed in either sample in the region of resonance with the GaAs LO phonons. However, above the LO-phonon frequency energy E-LO at B > 27 T, electron CR exhibits a strong avoided-level-crossing splitting for both samples at energies close to E-LO + (E-2 - E-1), where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large, reaching a minimum of about 40 cm(-1) around 30.5 T for both samples. This splitting is due to a three-level resonance between the second LI, of the first electron subband and the lowest LL of the second subband plus an LO phonon. The large splitting in the presence: of high electron densities is due to the absence of occupation (Pauli-principle) effects in the final states and weak screening for this three-level process. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have made a normal incidence high infrared absorption efficiency AlAs/Al0.55Ga0.45As multiple-quantum-well structure grown on (211) GaAs substrates by molecular beam epitaxy (MBE). A strong infrared absorption signal at 11.6 mu m due to the transition of the ground state to the first excited state, and a small signal at 6.8 mu m due to the transition from the ground state to continuum. were observed. A 45 degrees tilted incidence measurement was also performed on the same sample for the comparison with a normal incidence measurement. Both measurements provide important information about the quantum well absorption efficiency. Efficiencies which evaluate the absorption of electric components perpendicular and parallel to the well plane are eta(perpendicular to) = 25% and eta(parallel to) = 88%, respectively. The total efficiency is then deduced to be eta = 91%. It is apparent that the efficiency eta(parallel to) dominates the total quantum efficiency eta Because an electron in the (211) AlAs well has a small effective mass (m(zx)* or m(zy)*), the normal incidence absorption coefficient is expected to be higher:than that grown on (511) and (311) substrates. Thus, in the present study, we use the (211) substrate to fabricate QWIP. The experimental results indicate the potential of these novel structures for use as normal incidence infrared photodetectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photocurrent (PC) spectra of ZnCdSe-ZnSe double multi-quantum wells are measured at different temperature. Its corresponding photocurrent derivative (PCD) spectra are obtained by computing, and the PCD spectra have greatly enhanced the sensitivity of the relative weak PC signals. The polarization dependence of the PC spectra shows that the transitions observed in the PC spectra are heavy-hole related, and the transition energy coincide well with the results obtained by envelope function approximation including strain. The temperature dependence of the photocurrent curves indicates that the thermal activation is the dominant transport mechanism of the carriers in our samples. The concept of saturation temperature region is introduced to explain why the PC spectra have different temperature dependence in the samples with different structure parameters. It is found to be very useful in designing photovoltaic devices.